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Figure 1: Overview of WebEvolver – A Self-Improving Framework with World-Model Look-Ahead.
Our framework co-trains a world model alongside the agent by predicting next-step observations
from current states and actions, using trajectory data collected during sampling. The world model
then serves as a virtual web engine, enabling synthetic multi-step trajectories generation for training
the policy. During inference, the world model performs look-ahead planning to help score and select
optimal actions.

Abstract

Agent self-improvement, where the backbone Large Language Model (LLM) of the
agent are trained on trajectories sampled autonomously based on their own policies,
has emerged as a promising approach for enhancing performance. Recent advance-
ments, particularly in web environments, face a critical limitation: their performance
will reach a stagnation point during autonomous learning cycles, hindering further im-
provement. We argue that this stems from limited exploration of the web environment
and insufficient exploitation of pre-trained web knowledge in LLMs. To improve the
performance of self-improvement, we propose a novel framework that introduces a
co-evolving World Model LLM. This world model predicts the next observation based
on the current observation and action within the web environment. Leveraging LLMs’
pretrained knowledge of abundant web content, the World Model serves dual roles: (1)
as a virtual web server generating self-instructed training data to continuously refine the
agent’s policy, and (2) as an imagination engine during inference, enabling look-ahead
simulation to guide action selection for the agent LLM. Experiments in real-world web
environments (Mind2Web-Live, WebVoyager, and GAIA-web) show a 10% performance
gain over existing self-evolving agents, demonstrating the efficacy and generalizability
of our approach, without using any distillation from more powerful close-sourced mod-
els. Our work establishes the necessity of integrating world models into autonomous
agent frameworks to unlock sustained adaptability.

†tianqfang@tencent.com
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1 Introduction

Autonomous agents, especially Web agents operating in online environments, play a crucial role
in automating complex tasks, advancing progress towards artificial general intelligence (OpenAI,
2025; Monica.Im, 2025; Qin et al., 2025; Liang et al., 2025). The capabilities of these agents stem from
two key components, the design of the system, which facilitates accessing and processing abundant
information from the web, and the agent foundation language model itself, which is typically a
(Multimodal) Large Language Model (LLM) that generates actions based on the provide context.

Recent work in agent self-improvement focuses on refining these LLM-based agents through itera-
tive cycles of autonomous interaction: the agent generates actions to interact with the environment,
forming behavioral trajectories, and the backbone agent LLM is then fine-tuned on this self-collected
data after rejection sampling (Yin et al., 2024; Murty et al., 2024; Patel et al., 2024; Aksitov et al.,
2023; He et al., 2024b; Xi et al., 2024). Although this bootstrapping approach reduces the reliance
on human-labeled trajectory data, it faces a critical limitation: performance eventually plateaus,
preventing further improvement despite continued self-improvement (Zeng et al., 2024).

This stagnation stems from two critical bottlenecks. First, the agent’s exploration diversity diminishes
over time, as its policy becomes too specialized to familiar trajectories, failing to discover novel states
or actions (He et al., 2024b). Second, despite the existence of inference-time exploration algorithms,
such as variations of searching algorithms (Koh et al., 2024b; Zhang et al., 2024b; Zhou et al., 2024a;
Putta et al., 2024; Yu et al., 2024), that can provide diversified action choices, they require significantly
more real-world interactions that can be very costly, leading to marginal gains in useful information
prohibitively expensive. Although there is work using simulations (Gu et al., 2024; Qiao et al., 2024)
to perform action searching, they typically focus on one/two-step look-ahead, lacking the foresight
needed for coherent multi-step rollouts.

To address these limitations, we propose integrating a Co-evolving World Model into the self-
improvement loop, to support better multi-step trajectory synthesizing and look-ahead. The world
model, in our context, is defined as a language model that predicts the next observation (a web page),
conditioned on the current observation and an attempted action on the current web page. Our key
insight is that LLMs, pretrained on vast web content (e.g., Llama-3; Dubey et al., 2024), inherently
encode a structured understanding of website dynamics, user intents, and task workflows. The
World Model LLM is trained via supervised fine-tuning (SFT) on trajectories collected during agent-
environment interactions. Specifically, we fine-tune it to predict the next observation conditioned
on the current observation and action, by extracting data from trajectories sampled during the
self-improvement loop. This allows the World Model to evolve alongside the agent, improving its
ability to simulate realistic web interactions.

The World Model serves two synergistic roles: (1) as a virtual web server, it generates diverse,
self-instructed training trajectories by simulating interactions with unseen web environments.
This mitigates exploration bottlenecks by exposing the agent to a broader range of scenarios than
encountered in real interactions. Importantly, while the World Model may produce hallucinated
(i.e., non-realistic) web states, this is not a critical issue during training, as the agent’s objective
is to learn flexible action prediction rather than perfect state prediction. and (2) as an imagination
engine during inference, the World Model performs multi-step look-ahead simulations (Zhang et al.,
2025a), enabling evaluating several possible actions generated by the agent policy model without
costly real-world interactions. This dual mechanism of grounding self-improvement in both real
interactions and model-based foresight ensures sustained adaptability while minimizing reliance on
expensive environment interactions.

We validate our framework on real-world, open-domain web environments, including Mind2Web-
Live (Pan et al., 2024), WebVoyager (He et al., 2024a), and GAIA-web (Mialon et al., 2024). Ex-
periments demonstrate a 10% improvement in performance compared to self-evolving algorithm
baseline, OpenWebVoyager (He et al., 2024b), with significant gains in handling complex and unseen
tasks. Our contributions are twofold.
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1. A novel idea of Co-evolving world model in self-improving web agents, for generating
diverse training data and enabling action searching via low-cost multi-step imagination.

2. Empirical evidence that world-model-guided self-improvement improves the agent perfor-
mance and unlocks sustained adaptability in open-domain settings, with minimal human
supervision and without any distillation from more powerful LLMs.

This work underscores the necessity of integrating dynamic world models into agent frameworks to
transcend the limitations of purely data-driven self-training.

2 Related Work

Web Agent Recent advances in web agents leverage (multimodal) large language models as their
backbone (Dubey et al., 2024; Jia et al., 2024; OpenAI, 2023; Anthropic, 2025), enabling reasoning
through frameworks like ReAct Yao et al. (2023), MCP (Anthropic, 2024), and cognitive kernel (Zhang
et al., 2024a). These agents are evaluated on benchmarks such as WebShop (Yao et al., 2022),
Mind2Web (Deng et al., 2023), WebArena (Zhou et al., 2024b), VisualWebArena (Koh et al., 2024a),
WebVoyager (He et al., 2024a), WebWalker (Wu et al., 2025), and MMInA (Zhang et al., 2024c).
Besides applying off-the-shelf LLMs, there are data scaling efforts like Explorer (Pahuja et al., 2025),
NNetNav (Murty et al., 2025), and InSTA (Trabucco et al., 2025) enhance the training of LLMs.
Inference-time optimization techniques, including AgentTreeSearch (Koh et al., 2024b), Monte-Carlo
Tree Search (Putta et al., 2024; Yu et al., 2024; Zhou et al., 2024a; Zhang et al., 2024b), and Reflexion
(Shinn et al., 2023), further improve decision-making.

Agent Self-Improvement In addition to simply applying off-the-shelf LLM as the policy model, or
using imitation learning to fine-tune a policy model by distilling trajectories from powerful LLMs,
there is another line of work focusing on bootstrapping agent LLM’s ability using an open-source
LLM (Aksitov et al., 2023; Patel et al., 2024), based on the success of self-improving LLM’s reasoning
ability (Wang et al., 2023; Zelikman et al., 2022; Zeng et al., 2024). BAGEL (Murty et al., 2024),
OpenWebVoyager (He et al., 2024b), and Self-Improved Agents (Patel et al., 2024) explored iterative
exploration-feedback-optimization cycles, where agents refine their policies by learning from high-
quality trajectories in real-world or simulated web environments. Similarly, AgentQ (Putta et al.,
2024) and ReST+ReAct (Aksitov et al., 2023) integrated reinforcement learning and preference
optimization to enable agents to learn from both successful and failed trajectories, improving
robustness in multi-step reasoning tasks. To improve the performance of such self-improvement
cycle, Gödel Agent (Yin et al., 2024), push the boundaries of self-improvement by enabling agents to
dynamically modify their own logic or accumulate skills across diverse computer tasks. Zhang et al.
(2025b) explores bootstrapping the ability of backtracking in web agent tasks.

World Models World models have evolved from their reinforcement learning origins (Ha &
Schmidhuber, 2018) to become powerful tools for agent reasoning Valevski et al. (2024); Alonso
et al. (2024); Smith & Wellman (2023). Recent approaches leverage large language models (LLMs) as
implicit world models, enabling agents to simulate and plan through complex tasks. For general
reasoning, RAP (Hao et al., 2023) demonstrates how LLMs can serve dual roles as both world models
and reasoning agents, using Monte Carlo Tree Search to explore future states. Similarly, WKM (Qiao
et al., 2024) shows that structured world knowledge can be distilled from trajectories to guide agent
planning. In web environments, methods like WebDreamer (Gu et al., 2024) and WMA (Chae et al.,
2024) adapt this paradigm by using LLMs to predict action outcomes through natural language
simulations. However, these approaches remain limited by their reliance on off-the-shelf LLMs,
functioning more like sophisticated chain-of-thought reasoning than true multi-step simulation.

Our work advances beyond these limitations by co-learning a dedicated world model during agent
self-improvement. This enables genuine multi-step trajectory synthesis and look-ahead planning,
providing a more robust foundation for interactive decision-making than current prompt-based
approaches.
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3 Method

In this section, we introduce the WebEvolver, a co-learning framework of World Model and Agent
Policy model. An overview illustration figure is presented in Figure 1.

3.1 Problem Formulation

The web agent task is formulated as a Partially Observable Markov Decision Process (POMDP)
(S ,A,O, T ,R), where the agent receives a natural language query q requiring multi-step web
interaction under the environment. The state space S represents the complete web environment,
while the observation space O is limited to visible elements. At each time step t: ot = Ω(st), where
Ω is a function extracting visible contents like (URL, Web Elements) from the current state st. A
represents the whole action space, which, in our case we include click, type, goback, scroll
down/up, and stop, as the atomic web operations. T represents the deterministic transition function
that executes browser operations to advance the state. The agent’s policy π(ot, q) → at generates
actions that produce trajectories τ = {(o1, a1), . . . , (ot, at)}, with final rewards computed through
self-assessment r̂(τ, q) ∈ [0, 1].

Given a task query q and target website w, we initialize the web environment and get the first
observation o1 ∈ O. We follow the settings in Cognitive Kernel (Zhang et al., 2024a) and use
accessibility tree to represent the elements in ot. Using an LLM as agent policy model parameterized
by θ, we generate chain-of-thoughts ht and actions at at time step t:

(ht, at) ∼ πθ(·|I, q, o1:t, h1:t−1, a1:t−1) (1)

where I contains system instructions. The transition function T executes actions on the environment:

st+1 = T (st, at), ot+1 = Ω(st+1) (2)

The complete trajectory is τ = (o1, h1, a1, . . . , oT , hT , aT), where T denotes the total number of
navigation steps.

3.2 Agent Self-Improvement

In this subsection, we introduce the self-improvement of a backbone agent foundation model,
denoted as M, and the corresponding policy function is denoted as πM.

Trajectories Collection We employ M to sample actions based on an input query q, which are
then used to collect web navigation trajectories. We use M as the agent foundation model to power
Cognitive Kernel, which interacts with web environments. The agent observes the last k steps,
represented as webpage accessibility trees, to inform its actions.

For each query q ∈ Q, a trajectory τi is sampled from the policy πθM (τ | I, q). To prevent performance
degradation from too long contexts, we clip the trajectory history ct when t − 1 > k by keeping
only the latest observations. The thoughts and actions are kept as they contain some compressed
information about the history.

cclip
t = (h1, a1, h2, a2, . . . , ht−k, at−k, ot−k+1, ht−k+1, at−k+1, . . . , ot−1), (3)

such that the new actions are generated with the following function:

(ht, at) ∼ πθM (· | I, q, cclip
t ). (4)
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World Model as Synthetic Web Server: Generating Synthetic Trajectories

World Model Look-Ahead for Inference-time Action Selection

Figure 2: An illustration of the World Model trajectory synthesizing process and World Model
Look-ahead for inference-time action selection.

Notably, we retain the thought and action at each step to preserve the full reasoning chain while
avoiding context overload. Then, rejection sampling is conducted to keep those trajectories that are
successfully finished, using an automatic evaluation method r̂(τ, q).

Iterative Optimization At the i-th iteration of the self-improvement, we denote the collected
trajectories after rejection sampling as Di. We aim to maximize the following objective function:

J (θ) = E(q,τ)∼Di

T

∑
t=1

[
log πθ(at|q, cclip′

t , ht) + log πθ(ht|q, cclip′

t )
]
, (5)

After acquiring the new policy model Mi, it is used to sample trajectories from the query set Q
again. The newly successful trajectories are then appended to Di to form a new training dataset
Di+1 to perform the next round of optimization.

3.3 WebEvolver: Synergy between world model and self-improving agent.

In this subsection we introduce the co-learning world model, and how to use the world model for
trajectory synthesizing and inference-time look-ahead. An illustration figure is presented in Figure
2.

Co-learning World Model The world model is a language model that simulates the next observa-
tion ôt+1 conditioned on both the current webpage’s accessibility tree (ot) and a formatted action
string (at−1), thereby predicting state transitions. We learn a world model LLM Mw using the
collected trajectory during self-improvement.

From the a collected trajectory τ = {(o0, a0), . . . , (ot, at)}, we can convert it to a world modeling
trajectory τw = {o0, (a0, o1), . . . , (at−1, ot)}, such that the objective of world model is to predict the
next observation ot conditioned on the scheduled action at−1 and previous observations. Similar with
the trajectories in agent policy model, we truncate the history observations to avoid performance
degrade on long contexts. Here, we simply use the latest observation as history. Besides, we distill
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some rationales using the original base LLM M about the logic of the transition function T to help
the generation of the next webpage. Such chain-of-thoughts at step t is denoted as hw

t . We do not
omit the action and thoughts to make the world model aware of some of the previous information
and the depth of the trajectory.

cw
t = (a1, hw

1 , . . . , at−2, hw
t−2, ot−1, at−1), (6)

Such that the next webpage observation ot is generated with the following function, where θw is the
parameters of Mw.

ot ∼ πθw(·|Iw, cw
t ) (7)

The world model is then optimized using the latest iteration of collected trajectories.

J (θw) = Eτw∼Di

T

∑
t=1

[
log πθw(at|cw

t , hw
t ) + log πθw(h

w
t |cw

t )
]
, (8)

Trajectory Synthesize We can use an agent policy model Mi and a world model Mw to perform
synthetic trajectory generation, enabling us to scale up the training data without interacting with the
real web server, which can be very costly. Here, we directly replace the transition function T with
the world model Mw. Specifically, the next synthetic observation is generated with:

ôt ∼ πθw(·|Iw, cw
t ) (9)

Then, in the next step, the policy model generates next action conditioned on the synthetic observa-
tion:

(ĥt, ât) ∼ πθM (· | I, q, ĉclip
t ). (10)

Those collected trajectory is thus τ̂ = {(o0, a0), (ô1, â1), . . . , (ôt, ât)}, which ultimately forms a
trajectory dataset Dw after rejection sampling. By combining Di from self-improvement and Dw, we
can get an augmented new training dataset to train a new policy model, WebEvolver.

Inference-time Look-ahead To enhance decision-making during inference, we propose a look-
ahead mechanism that simulates d-step trajectories using both the agent policy model Mi and the
world model Mw. We call this method World Model Look-Ahead (WMLA). For each candidate
action at at step t, we first simulate trajectories by generating d-step rollouts τ̂w through iterative
application of:

ôt+j ∼ πθw(·|Iw, cw
t+j), (ĥt+j, ât+j) ∼ πθM (·|I, q, ĉclip

t+j ), (11)

where j ∈ {1, . . . , d}, cw
t+j and ĉclip

t+j are truncated histories from the world model and policy model,
respectively.

Next, we evaluate trajectories by employing an LLM-based evaluator to score each rollout τ̂w.
Following Koh et al. (2024b); Gu et al. (2024), the evaluator assigns a scalar from {0, 0.5, 1.0}
(incorrect, on track, or complete) based on the trajectory’s alignment with task completion. Finally,
we select the optimal action a∗t = arg maxat Score(at) that maximizes expected progress.
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4 Experiments

4.1 Setup

We use the Cognitive Kernel (Zhang et al., 2024a) as the foundation agent framework, specifically its
Web Agent Module for autonomous Web interaction. Here, the state space S is the whole Internet,
powered by Playwright1 in the Web docker in Cognitive Kernel. The action space include type,
click, scroll, goback, stop, and restart. At each time step t, the observation ot is the accessibility
tree of the visible components in the virtual browser, simulating what humans can perceive when
browsing online. The transition function T executes atomic browser actions based on the current
webpage state, updates the webpage, and thus the observation accordingly, and handles execution
errors by feeding them back to the reasoning system until task completion or step limit is reached.
Regarding the evaluation protocol R, we address potential false negatives in human-annotated step-
wise comparisons (Pan et al., 2024) by employing GPT-4o for end-to-end task completion assessment,
following the methodology of He et al. (2024a). This method accommodates the existence of multiple
distinct trajectories that can each successfully accomplish the same task objective, other than the
human-annotated ones. GPT-4o will be provided the full trajectory of the task and asked to evaluate
whether the original query q is completed or not, yielding a binary score of 0 or 1.

Regarding self-improvement, the backbone agent foundation model M we use is Llama-3.3-70b,
and subsequently the self-improving experiments are also based on Llama-3.3-70b. During rejection
sampling, Llama-3.3-70b is used to evaluate whether the task has successfully completed or not.
More details regarding the agent system, including definitions of the atomic operations, system
prompts, are detailed in Appendix A.

We select two live web navigation benchmarks for experiments, WebVoyager (He et al., 2024a) and
Mind2Web-Live (Pan et al., 2024). Here, the web agent is expected to interact with the real-world
web environment to complete the task. Since some websites are not accessible in our experimental
web environment, either due to geographical locations or IP blocks, we filter out some websites
for our experiments2. To ensure robustness, we conduct our experiments roughly at the same time
window twice and report the average results.

4.2 Self-Improvement

We use Llama3.3-70B as the backbone LLM M for sampling and self-improving. For the training
query, we follow OpenWebVoyager (He et al., 2024b)3 to use the training set of Mind2web and
self-instructed queries from both the websites in WebVoyager and Mind2web, in total 1,516 queries.
We first use Llama3.3-70B as the backbone agent policy model for sampling queries, and conduct a
round of rejection sampling using Llama3.3-70B itself as the backbone for evaluation function r̂4,
using the evaluation prompt in Appendix A. The trajectories are then used to fine-tune Llama3.3-70B
to acquire the model named self-improve (iter 1). Then, we use the improved model to conduct another
round of trajectory sampling, where the newly sampled finished trajectories are added to the training
data in the first round, to train a new model named self-improve (iter 2). In the meantime, we convert
the trajectories to the form of training a world model, meaning predicting the next observation ot
based on the scheduled observation at−1 and the histories of the observations.

World Model We adopt a Llama3.3-70B to fine-tune the world model, alongside the self-
improving of policy model, to get world model (iter 1) and world model (iter 2). For synthetic trajectory
generation, we use the world model Mw (at iteration 2) and policy model M1 (at iteration 1, which

1A Javascript version. More details in https://playwright.dev
2Details about the websites are presented in Appendix B
3https://github.com/MinorJerry/OpenWebVoyager/tree/main/WebVoyager/data_for_training/IL
4In the original OpenWebVoyager paper, GPT-4o serves as the backbone for the scoring function. In this

work, to ensure a purely self-improving process, we only employ Llama3-70B within the self-improvement
loop.
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GPT-4o-mini 44.44 39.53 23.26 21.43 30.23 35.71 27.27 31.71 41.46 25.58 36.96 32.55 16.98
GPT-4o 31.11 41.86 27.91 32.56 41.86 47.62 27.27 36.59 36.58 46.51 56.52 38.83 20.75
Self-Improving
Llama-3.3 70B 35.56 39.53 9.30 28.57 37.21 38.10 50.00 24.39 34.15 23.26 41.30 32.98 18.86
self-improve (1) 55.56 39.53 27.91 45.24 20.93 61.90 34.09 39.02 39.02 23.26 39.13 38.68 15.09
self-improve (2) 40.00 30.23 27.91 30.95 32.56 59.52 29.55 43.90 46.34 41.46 39.13 38.23 16.98
self-improve (3) 44.44 30.23 32.25 33.33 32.56 47.62 31.81 43.90 48.78 34.89 45.65 38.65 16.98
Synthetic Traj. 55.56 41.86 32.25 35.71 34.89 46.51 31.81 34.14 36.59 34.89 43.47 38.98 18.86
WebEvolver 62.22 30.23 37.21 47.62 53.49 59.52 34.09 26.83 46.34 23.26 45.65 42.49 22.64
Inference-time Look-ahead
+ WebDreamer 64.44 41.86 44.19 57.14 30.23 59.52 20.45 41.46 46.34 41.86 43.48 44.61 22.64
+ WMLH (d=1) 66.67 46.51 39.53 42.86 32.56 69.05 22.73 43.90 68.29 37.21 41.46 46.24 28.30
+ WMLH (d=2) 64.44 41.86 46.51 42.86 62.79 66.67 40.91 46.34 43.90 53.49 54.34 51.37 24.53

Table 1: Task success rate on Text-only WebVoyager test set (WV; 473 queries) and Mind2Web-
Live-filtered test set (M2W Live; 53 queries). WebEvolver and WMLH are our approaches. For
Inference-time Look-ahead, the backbone policy model we use is WebEvolver. We leave more inference-
time look-ahead results on different policy models in Figure 3.
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Figure 3: Visual illustration of overall success rate evolving on WebVoyager and Mind2Web-Live.

has a better performance). For each query q, beginning with an initial observation-action pair (o0, a0),
we alternate between world model prediction and policy decisions: at each timestep t, the world
model generates the next synthetic observation ôt according to Equation (9), which the policy model
then uses to produce the subsequent action ât via Equation (10). This interaction forms complete
synthetic multi-step trajectories τ̂ of length T = 7 steps, with early termination if the world model
generates a terminal state. An example if presented in Figure 4. To have a more diverse training set,
we only use the queries that are not successfully executed in self-improving iterations to acquire
synthetic trajectories. We apply another round of rejection sampling using the evaluation protocol
R, while using zero-shot Llama3.3-70B as the backbone language model to follow the setting of
self-improving. In the end, the world-model-synthesized data are combined with the SFT data in
self-improvement, to train Llama3.3-70B to acquire the final model of WebEvolver.

4.3 Inference-time World Model Look-ahead (WMLA)

To perform WMLA, we use the policy model M to sample up to 3 actions. At time step t, with
observation ot, we use the original policy model with temperature equal to 0 to generate the first
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Model All Depth=1 Depth=2 Depth=3 Depth≥4
STR Sim. O/A STR Sim. O/A STR Sim. O/A STR Sim. O/A STR Sim. O/A

gpt-4o 40.62 33.26 37.85 41.24 35.73 40.21 38.20 32.58 36.70 36.99 31.96 37.44 42.41 32.91 37.45
Llama-3.3-70b 39.04 32.25 38.77 43.64 39.51 34.83 39.33 34.83 41.95 39.73 33.33 41.55 36.85 27.99 35.16
iter-1 49.23 37.83 43.15 55.44 44.91 50.52 53.03 39.77 46.59 53.70 40.28 46.30 43.76 33.33 37.73
iter-2 56.79 44.77 51.82 75.96 63.56 72.86 57.80 45.14 52.32 51.24 35.82 45.27 50.54 39.94 45.31

Table 2: Performance of intrinsic evaluation of world modeling. Structural correctness (STR) mea-
sures syntactic validity of the generated accessibility tree, Similarity (Sim.) assesses alignment with
ground-truth webpage content, and Overall assessment (O/A) evaluates functional and semantic
coherence. All values are percentages (range 0-100). Details of the evaluation metrics ae presented
in Section 4.4.

action, a(1)t . Since the fine-tuned policy model will have a sharp output distribution, making it hard
to directly sample different actions during decoding, besides setting the decoding temperature to
0.7, we add a sentence of additional prompt to guide the policy model to generate the k-th action:
Please generate actions different from {a(j)

t , j ∈ {1, . . . , k − 1}}. Then, we use the final world model
world model (iter 2) and the policy agent model to iteratively sample future look-ahead trajectories
based on Equation (11), with a look-ahead depth of 1, 2, and 3. Then, following WebDreamer, we
use GPT-4o as the scoring function to rate each action based on the look-ahead results and choose
the action with the highest score for execution.

4.4 Results and Analysis

In this subsection, we provide results of self-improvements, the effect of WMLA, the intrinsic
evaluation of world models, and additional experiments on GAIA.

WebEvolver and WMLA Main Results Our key findings are presented in Table 1, with the
progression of self-improvement across iterations visualized in Figure 3. The first two rows of the
table establish reference performance using GPT-4o and GPT-4o-mini as foundation models. In
terms of self-improvement, the initial self-improvement iteration yields a 6% success rate increase
over the zero-shot baseline on WebVoyager, due to enhanced format compliance and task familiarity.
Performance plateaus at iteration 2, suggesting limited gains from additional similar trajectories.
However, incorporating world-model-synthesized data with iteration 1’s supervised fine-tuning
(SFT) data produces a further 4% improvement. This has better improvement compared to the
baseline approach adapted from Patel et al. (2024) that generates synthetic trajectories without world
modeling.

For inference-time action selection with WebEvolver, we benchmark against WebDreamer using
GPT-4o for both outcome prediction and action evaluation. Our World Model-based Look-ahead
(WMLH) demonstrates optimal performance at depth d = 2, balancing prediction accuracy against
computational overhead. Notably, increasing to d = 3 provides diminishing returns, consistent with
our world model’s performance characteristics (see Table 2).

World Model Intrinsic Evaluation We evaluate our world model’s ability to generate plausible
next webpages through three metrics: Structural correctness (STR) measuring syntactic validity of
the generated accessibility tree, Similarity (Sim.) assessing alignment with ground-truth webpage
content, and Overall assessment (O/A) evaluating functional and semantic coherence. While
real-time information (e.g., from BBC or Hugging Face) inevitably causes hallucinations during
generation, we do not directly evaluate the degree of hallucination. Hallucinations are implicitly
captured through Sim. and O/A scores, yet they pose minimal risk in our framework. In fact,
they may enhance diversity and knowledge in synthesized trajectories, with benefits empirically
validated by downstream performance gains. We use GPT-4o to perform an automatic evaluation of
all three metrics and normalize the scores to 0∼ 1. The prompt we used is presented in Appendix A.
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Tab 0 (current): GitHub 

[1] RootWebArea 'Repository search results · GitHub’ 

…

  [104] menu 'Sort by: Best match' orientation: vertical

  [105] menuitemradio 'Best match' focused: true checked: true 

[106] menuitemradio 'Most stars' checked: false keyshortcuts: m

  [107] menuitemradio 'Fewest stars' checked: false keyshortcuts: f

  [108] menuitemradio 'Most forks' checked: false keyshortcuts: m

  [109] menuitemradio 'Fewest forks' checked: false keyshortcuts: f

  [110] menuitemradio 'Recently updated' checked: false

[47] heading ‘mlabonne/llm-course'

[48] link ‘mlabonne/llm-course’

… 

[59] link '48.9k stars'

[64] heading ‘modular/max’

[65] link ‘modular/max’

…

[76] link '23.8k stars’

…

[81] ‘heading pathwaycom/llm-app 

…

Tab 0 (current): GitHub

[1] RootWebArea 'Repository search results · GitHub’ 

…

[37] button 'Sort by: Best match’     hasPopup: menu 

expanded: true

[38] StaticText 'Best match’

[39] menuitem 'Sort by: Best match’ 

[40] menuitem 'Sort by: Most stars‘

[41] menuitem 'Sort by: Fewest stars‘

[42] menuitem 'Sort by: Most forks’

…

[84] link 'google/ml-metadata’

[85] heading 'google/ml-metadata’

[98] link '1.5k stars'\n\t

…

[103] link 'sayak-paul/awesome-machine-

learning-in-rust'

…

[115] link '573 stars’\n\t

[119] link 'google-research/google-

research.github.io

[127] link '144 stars’

…

Actual Web Page

Actual Accessibility Tree

World Model-Synthesized Accessibility Tree

Click [106]

Click [40]

What are the most starred repos related to machine learning 

that was created after 2023-01-01, on www.github.com? 

CallWeb(query=machine-learning created:>2023-01-01 

stars:>1, target_url=www.github,com)

mlabonne/

llm-course

'google/

ml-metadata

Actual 

Response

Synthesized 

Response

Open www.github.com

Type machine-learning created:>2023-01-01 stars:>1

Initial State

clicking `sort by`

Figure 4: An example of world model-synthesized trajectory.

The results are presented in Table 2. We can see that the performance degrades sharply (scores < 0.50)
for generation depths > 2, which is in line with the experiments in WMLH that the performance
gain diminishes when WMLH depths ≥ 3.

Model Level 1 Level 2

Llama 3.3-70b 19.2 10.9
iter 1 26.9 15.6
iter 2 26.9 12.5
WebEvolver 30.7 17.2

Table 3: GAIA-web performance.

Out-of-domain Generalization We evaluate our im-
proved agent foundation model on GAIA (Mialon et al.,
2024), focusing on the web-dependent query subset
(GAIA-web)5. These tasks typically require multi-step
web navigation combined with arithmetic/logical reason-
ing. Since the self-improved agent LLM focuses solely
on action generation, we adopt a hybrid approach: we
use GPT-4o to decompose queries into sub-tasks that web
agents can address, and also leverage GPT-4o for result
generation and calculation. The web agent component is
based on Llama-based models including WebEvolver. We use bing.com instead of Google due to
CAPTCHA challenges, which can also demonstrating our method’s out-of-domain generalization
since the training data does not contain trajectories in bing.com. Results on Table 3 show consistent

5https://github.com/MinorJerry/WebVoyager/blob/main/data/GAIA_web.jsonl
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improvement on Level 1 queries through self-improvement and world model augmentation, mirror-
ing trends observed in WebVoyager and Mind2web-live. However, Level 2 queries, which demand
deeper reasoning and extended multi-step interactions, show limited gains, as these capabilities lie
beyond our current training scope. This limitation highlights an important direction for future work
in developing agents for complex, real-world web tasks.

Analysis of World-Model Synthesized Trajectories We provide two cases on the world-model
synthesized trajectories, indicating that LLM itself contains useful knowledge about the common
structures of the web and has the potential to provide diverse trajectories. It is provided in Figure 4.
This case demonstrates an operation involving a click on the ‘sort by‘ menu in the GitHub search
console. Although the world model has not been further fine-tuned on trajectories that include
clicking the ‘sort by‘ button, it is still able to accurately generate the menu items for GitHub Search,
such as sorting by best match, most stars, and so on. This capability arises from the commonsense
knowledge inherently encoded in the LLM. We find that this feature is highly beneficial for improving
the diversity of interactions with previously unseen websites.

5 Conclusion

In this paper, we present WebEvolver, a framework for agent foundation model self-improvement
through co-learning with a world model, which enhances the effectiveness of the self-improvement
cycle. The co-learned world model can also be utilized for inference-time look-ahead, aiding in
the selection among different sampled actions. Experiments on WebVoyager, Mind2Web-Live, and
GAIA-web demonstrate the effectiveness of boosting the performance of self-improving agent.
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A Details of Agent Implementation

In this section, we present additional details of the prompt we used for the web agent.

The system prompt for web agent action generation:

AGENT SYSTEM PROMPT

You are an autonomous intelligent agent tasked with navigating a web browser. You

will be given web-based tasks. These tasks will be accomplished through the use of

specific actions you can issue.

Here’s the information you’ll have:

• The user’s objective: This is the task you’re trying to complete.

• The current observation (web page’s accessibility tree): This is a simplified

representation of the webpage, providing key information. Optionally, you may be

provided with a screenshot of the webpage. You should pay close attention to the

screesnhot to make decisions.

• The open tabs: These are the tabs you have open.

• The previous actions: You can refer to the conversation history with the user to

see the actions you have taken. It may be helpful to track your progress.

The actions you can perform are the following:

• ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

• ‘type [id] [content] [press enter after=0|1]‘: Use this to type the content

into the field with id. By default, the Ënterk̈ey is pressed after typing unless

press enter after is set to 0.

• ‘wait‘: Wait for the page to load, with a duration of 5 seconds.

• ‘goback‘: Navigate to the previously viewed page.

• ‘restart‘: Navigate to the Google search homepage. When you can’t find

information in some websites, try starting over from Google search.

• ‘stop [answer]‘: Issue this action when you believe the task is complete. If the

objective is to find a text-based answer, provide the answer in the bracket. If

you believe the task is impossible to complete, provide the answer as "N/A" in the

bracket.

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation. For

example, you should NOT type into buttons or click on statictext.

2. You should only issue one action at a time.

3. STRICTLY Avoid repeating the same action if the webpage remains unchanged. You

may have selected the wrong web element or numerical label. Continuous use of the

Wait is also NOT allowed.

4. Issue stop action when you think you have achieved the objective. Don’t generate

anything after stop.

Your reply should strictly follow the format: Thought: {{Your brief thoughts

(briefly summarize the info that will help complete the task)}} Action: ‘‘‘{{the
next action you choose to take}}‘‘‘

The system prompt for using world model as a web server, by generating the next observation
based on current observation and the scheduled action. We present two variation of world model
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objectives, the first one is to only predict an abstract short description of what the next observation
is (denoted as Abstract Description), and the second one is to predict the structured accessibility
tree of the next observation (denoted as Accessibility Tree).

WORLD MODEL LOOK-AHEAD (ABSTRACT DESCRIPTION)

You are a web server. You are given the current observed accessibility tree of the

web page, and an action to perform.

The expected output is a short description on what the next observation is, in the

form of free text.

The definitions of the actions are as follows: The actions you can perform are the

following:

• ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

• ‘type [id] [content] [press enter after=0|1]‘: Use this to type the content

into the field with id. By default, the Ënterk̈ey is pressed after typing unless

press enter after is set to 0.

• ‘scroll [direction=down|up]‘: Scroll the page up or down.

• ‘goback‘: Navigate to the previously viewed page.

• ‘restart‘: Navigate to the original home page and restart the action.

WORLD MODEL LOOK-AHEAD (ACCESSIBILITY TREE)

You are an intelligent assistant designed to interact with web pages through an

accessibility tree. Your task is to predict the accessibility tree of the next web

page based on the given starting accessibility tree and a specified action. The

format of accessibility tree:

Tab 0 (current): Google \n \n[1] RootWebArea ’Google’ focused: true\n�[2] link

’Gmail ’\n�[3] link ’Search Image ’\n�[4] button ’Google Apps’ expanded: false\n�[5]
link ’Log in’\n�[6] image ’2024’\n�[7] combobox ’Search’ focused: true autocomplete:

both hasPopup: listbox required: false expanded: false\n�[8] button ’Share’

The format of action:

type [7] [JQuery selector for elements with specific class] [1]

which indicates typing "JQuery selector for elements with specific class" into the

field with id 7, corresponding to the combobox (search box) on the Google homepage.

The definitions of the actions are as follows: The actions you can perform are the

following:

• ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

• ‘type [id] [content] [press enter after=0|1]‘: Use this to type the content

into the field with id. By default, the Ënterk̈ey is pressed after typing unless

press enter after is set to 0.

• ‘scroll [direction=down|up]‘: Scroll the page up or down.

• ‘goback‘: Navigate to the previously viewed page.

• ‘restart‘: Navigate to the Google search homepage. When you can’t find

information in some websites, try starting over from Google search.

The system prompt for automatic evaluation of a web agent task.
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AUTOMATIC EVALUATION

As an evaluator, you will be presented with three primary components to assist you in

your role:

1. Web Task Instruction: This is a clear and specific directive provided in natural

language, detailing the online activity to be carried out. These requirements may

include conducting searches, verifying information, comparing prices, checking

availability, or any other action relevant to the specified web service (such as

Amazon, Apple, ArXiv, BBC News, Booking etc).

2. Result Webpage Accessibility Tree: This is a representation of the web page

showing the result or intermediate state of performing a web task. It serves as

proof of the actions taken in response to the instruction.

3. Result Response: This is a textual response obtained after the execution of the

web task. It serves as textual result in response to the instruction.

• You DO NOT NEED to interact with web pages or perform actions such as booking

flights or conducting searches on websites.

• You SHOULD NOT make assumptions based on information not presented in the webpage

when comparing it to the instructions.

• Your primary responsibility is to conduct a thorough assessment of the web task

instruction against the outcome depicted in the screenshot and in the response,

evaluating whether the actions taken align with the given instructions.

• NOTE that the instruction may involve more than one task, for example, locating

the garage and summarizing the review. Failing to complete either task, such as

not providing a summary, should be considered unsuccessful.

• NOTE that the screenshot is authentic, but the response provided by LLM is

generated at the end of web browsing, and there may be discrepancies between the

text and the screenshots.

• Note the difference: 1) Result response may contradict the screenshot, then the

content of the screenshot prevails, 2) The content in the Result response is not

mentioned on the screenshot, choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a

definitive verdict on whether the task has been successfully accomplished, either as

’SUCCESS’ or ’NOT SUCCESS’.

The system prompt for automatic evaluation of world modeling.

WORLD MODEL INTRINSIC EVALUATION

You are tasked with evaluating the accuracy of ntnerated accessibility tree against a

ground truth accessibility tree obtained from an actual web server. Your evaluation

should focus on three main criteria: structure correctness, element correctness, and

similarity. Follow the instructions below to perform a detailed comparison:

Criteria for Evaluation:

1. **Structure Correctness**:

• Ensure that the basic hierarchy and relationships between elements in the

generated tree match the ground truth.

• Ensure that interactive elements (like buttons, links, forms) are correctly

represented and maintain their intended functionality.

2. **Similarity (GPT-score)**:

• Assess how similar the generated content is compared to the ground truth.
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• Provide a similarity score based on the overall content and structure comparison.

3. **Overall Functionality Assessment**:

• Compare the functional coherence of the generated tree to the ground truth tree,

focusing on the representation and functionality of interactive elements.

• Evaluate the semantic coherence of the generated tree, ensuring that it conveys

the same meaning and purpose as the ground truth.

For example, if if the webpage is on Allrecipe, as long as the generated tree contain

necessary recipe, no matter hallucination, it can be considered as success. For

example, if the webpage is on google, in searching for some information, then only

consider whether the generated tree contain roughly necessary information without the

need to check the factuality.

1. **Input Trees**:

• You will be provided with two accessibility trees: one generated by a language

model simulating a web browser, and one obtained from an actual web server.

2. **Output Format**:

- Provide rationale of your findings, including:

• Structural discrepancies

• Similarity score with an explanation

• Scores should be selected from [0, 1, 2, 3]. 3 means exactly the same and 0 means

a total failure of generation.

### Example Output

Structure Correctness: [THOUGHT]\n Score: [score]\n
Similarity: [THOUGHT]\n Score: [score]\n
Overall Functionality Assessment: [THOUGHT]\nScore: [score]\n

B Additional Details on Mind2web-live and WebVoyager Dataset

We conduct our evaluations using a subset of the testing portion of Mind2Web-Live6 and WebVoy-
ager7. Here is a list of the websites that are excluded:

EXCLUDED WEBSITES

EXCLUDED WEBSITES MIND2WEB = { ’exploretock’, ’kohls’, ’united’, ’parking’, ’viator’,

’delta’, ’redbox’, ’soundcloud’, ’gamestop’, ’travelzoo’, ’amctheatres’, ’ryanair’,

’cargurus’, ’resy’, ’rentalcars’, ’kbb’, ’cabelas’, ’menards’, ’yellowpages’,

’tripadvisor’, ’tiktok.music’, ’stubhub’, ’thumbtack’, ’weather’, ’uhaul’,

’health.usnews’, ’healthgrades’, ’theweathernetwork’, ’zocdoc’, ’usnews.education’,

’epicurious’, ’osu.edu’, ’ups’, ’dmv.virginia.gov’, ’extraspace’, ’finance.yahoo’,

’pinterest’, ’sixflags’, ’spothero’, ’justice.gov’, ’foxsports’, ’ign’, ’koa’,

’tvguide’, ’webmd’, ’sports.yahoo’, ’babycenter’, ’tesla’, }
EXCLUDED WEBSITES WEBVOYAGER = { ’booking’, ’espn’, ’amazon’, ’google’, ’googleflight’

}

6https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/blob/main/mind2web-live_test_
20241024.json

7https://github.com/MinorJerry/WebVoyager/blob/main/data/WebVoyager_data.jsonl
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