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ABSTRACT

Commonsense knowledge includes facts about the everyday world that ordinary people

are expected to know. It plays a crucial role in natural language processing (NLP) systems,

enabling them to make presumptions about common situations encountered by humans.

However, acquiring and incorporating commonsense knowledge into NLP systems poses

challenges, as such knowledge is typically implicit and not readily available in standard

corpora.

To tackle the data scarcity issue, a standard way to study commonsense is to construct

commonsense knowledge bases (CSKBs). Previous attempts have focused on (1) human

annotation, which is expensive and has limited scalability; (2) information extraction, which

suffers from relatively poor quality and reporting bias; or (3) text generation from Large

Language Models (LLMs), which suffers from selection bias and limited novelty of gen-

erated knowledge. Moreover, the power of LLMs to elicit commonsense knowledge also

requires fine-tuning on large-scale corpora and human-annotated commonsense data in the

first place.

xv



We propose an alternative commonsense knowledge acquisition framework, called Com-

monsense Knowledge Base Population (CKBP), which automatically populates complex

commonsense knowledge from more affordable linguistic knowledge resources. We es-

tablish a benchmark for CKBP based on event-event discourse relations extracted through

semantic and discourse parsing of large corpora, and we manually annotate 60K populated

triples for verification.

To carry out the population process, we introduce a Graph Neural Network (GNN)-

based model that leverages the rich contextual information in the knowledge graph as ad-

ditional supervision signals. Since CKBP is a semi-supervised learning problem with a

large amount of unlabeled data (discourse knowledge from large corpora), we also propose

a pseudo-labeling-based model that achieves excellent performance. We evaluate the ef-

fectiveness of the populated knowledge on downstream commonsense reasoning tasks and

observe that it enhances generative commonsense inference and commonsense question

answering by providing more diverse knowledge.

Furthermore, with the knowledge at hand, we explore commonsense reasoning based

on commonsense knowledge from two perspectives. First, we directly utilize the popu-

lated knowledge for downstream commonsense question answering by converting it into

question-answering (QA) form with templates, serving as supervision data for training QA

models and generative commonsense inference models. Second, we perform reasoning on

complex logical queries derived from commonsense knowledge graphs. We sample con-

junctive logical queries from the knowledge graphs and verbalize them using LLMs to

generate narratives for both training and evaluating models for complex reasoning. Ex-

perimental results demonstrate that while LLMs exhibit proficiency in handling one-hop

commonsense knowledge, performing complex reasoning involving multiple hops and in-

tersections on commonsense knowledge graphs remains challenging. Models trained on

complex logical queries show improvement in terms of general narrative understanding and

complex commonsense reasoning ability.
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CHAPTER 1

INTRODUCTION

1.1 Commonsense Knowledge

1.1.1 Definition of Commonsense Knowledge

Commonsense knowledge is a collection of information about everyday things that all hu-

mans are expected to know [12], like knowledge regarding entities such as “lemons are

sour”, and event-event inferential knowledge such as “if someone gets hungry and then

he/she wants to eat”. It is also defined or characterized as “commonsense knowledge in-

cludes the basic facts about events (including actions) and their effects, facts about knowl-

edge and how it is obtained, facts about beliefs and desires” by John McCarthy in 1989 [13],

and “what a typical seven year old knows about the world” by Ernest Davis [14].

Commonsense knowledge is crucial for natural language processing systems to under-

stand human language. For example, a recommendation system needs to know that lemon

is sour in order to recommend food to customers to fit their interests. In dialogue systems,

social commonsense knowledge and reasoning are also needed for machines to understand

human interactions better [15, 16]. When a driver tells his speech assistant that he is out

of gas, the system should be equipped with the ability to infer that the driver would like

to find a gas station nearby. With the rapid development of artificial intelligence systems,

a large amount novel datasets and benchmarks are created, leading to an emerging field of

commonsense reasoning, including but not restricted to domains such as daily entity under-

standing [17, 18, 19], social interaction [20, 21], spatial and temporal events [22, 23, 24],

numerical understanding [25, 26], stories and narratives understanding [27, 1], and visual

commonsense understanding [28, 29, 30].

Two pioneer works of computational commonsense knowledge are Cyc [31] and Con-

ceptNet [12]. Researchers propose to canonicalize world knowledge into knowledge bases

1



in order to collect commonsense knowledge in the open world that machines do not pos-

sess. Cyc is a commonsense knowledge base spanning everyday objects and actions like

You have to be awake to eat. While Cyc requires commercial licenses, ConceptNet is an

open-source commonsense knowledge base defined across curated relations. With several

rounds of development, ConceptNet 5.7 [32] now contains 3.4 Million entity-centric tuples

in English by crowdsourcing and merging with existing large-scale knowledge bases, such

as DBPedia [33] and WordNet [34]. With the rapid development of NLP techniques, more

is needed to investigate only object-level commonsense defined in ConceptNet. ATOMIC

is then collected across nine relations investigating social causes and effects, consisting of

880K tuples, e.g., (“If X repels Y’s attack”, Effect on Y, “Y arrested by the police”),

representing day-to-day inferential knowledge. Such everyday if-then commonsense rela-

tions are crucial for machines to understand human language.

In this thesis, we mainly focus on event-level inferential knowledge (defined in ATOMIC),

which has three advantages. First, the ATOMIC paradigm focuses on events, situations,

and states, which represent more complicated components than only entities and can have

a broader range of applications. Second, the nodes in ATOMIC are represented as free

text, and relations can be easily converted to natural language. This loosely structured form

aligns well with the current go-to backbone for performing natural language processing,

the Large Language Models (LLMs). Third, the ATOMIC paradigm relies on humans to

annotate plausible commonsense, which is subjective and intuitive. Unlike formal logic, it

better aligns with the unique characteristic of commonsense knowledge.

1.1.2 Limitations and Challenges for Commonsense Acquisition and
Reasoning

It is previously assumed that language models can only capture limited commonsense

knowledge by only self-supervised learning (models such as BERT [35], GPT [36], and

GPT2 [37], and T5 [38]), as commonsense knowledge is usually not explicitly presented

in the training corpora. The capacity of those Pre-trained Language Models (PLMs) is not

large enough to discover complex commonsense knowledge [39, 40]. This drives the need

2



to curate large-scale commonsense knowledge resources for “small” PLMs to equip them

with the ability to use commonsense reasoning.

With the rapid development of backbone language models, modern Large Language

Models (such as ChatGPT [41], Llama [42], Mistral [43], and Qwen [44]) have shown a

remarkable performance on many reasoning benchmarks [45, 46, 47, 48], yet there still

exists a need to ensure the alignment between the generation of LLMs with commonsense

knowledge to avoid hallucination and for safer usage against social bias [49, 50, 51]. This

motivates us to curate high-quality, large-scale, and high-coverage commonsense knowl-

edge resources that can be used to perform more accurate reasoning. However, existing

commonsense resources are either of a small scale and coverage (human annotation), of

a large scale but poor quality (information extraction), or of a large scale but not novel

(language model generation), due to the high cost of human annotation [12], the quality

issue and reporting bias [52] of information extraction, and selection bias [53] in language

models.

In addition, despite those LLMs having a large capacity to store numerous knowledge,

they may still fall short in terms of reasoning based on knowledge [54]. For instance,

[54] reported that ChatGPT can generate reasonably relevant knowledge when provided

with appropriate prompts for a commonsense reasoning task. However, despite its existing

knowledge, ChatGPT may not always provide correct answers when faced with concrete

reasoning scenarios in a different context. Similar situations are also observed for multi-

hop or complex commonsense reasoning, where LLMs fall short in performing conjunction,

projection, and negations over existing “known” knowledge (Chapter 7). An example de-

rived from the famous Winograd Schema Challenge is provided in Figure 1.1. The original

reasoning question is Reasoning Case 1, where a coreference resolution process is required

to determine what “he” refers to given the context: “ The father could not lift the son be-

cause he was weak.” Here, the knowledge needed is that if someone X cannot lift someone

Y, then X is considered weak. Even though ChatGPT already “knows” such knowledge, as

shown in the first sub-figure, it makes a mistake if we replace “father” with a “bodybuilder”

and “son” with a “frail senior”. This is because the “frail senior” is more semantically asso-

3



Knowledge:

Reasoning Case 1:

Reasoning Case 2 (Adversarial):

❌

✅

✅

Figure 1.1: A case when ChatGPT possesses the correct knowledge but fails to perform the
correct reasoning.

ciated with “weak”, thus being more confusing for statistical language models to perform

reasoning.

To tackle the above limitations, we propose Commonsense Knowledge Base Population

(CKBP), a framework that can scalably harvest commonsense knowledge of high quality

and high novelty without expensive human annotation, to deal with the limitation of not

having enough commonsense knowledge. Second, to tackle the reasoning issue of com-

monsense knowledge, we propose a framework to sample large-scale complex reasoning

signals from commonsense knowledge bases based on conjunctive logical queries.

4



1.2 Commonsense Knowledge Population and Reasoning

In this thesis, we first propose the task formulation and benchmarking of a new common-

sense acquisition paradigm, Commonsense Knowledge Base Population. Then, we intro-

duce novel algorithms for performing Commonsense Knowledge Base Population. Third,

we introduce how we leverage the (populated) commonsense knowledge to improve the

problem solving and reasoning ability of (large) language models.

1.2.1 Benchmarking Commonsense Knowledge Base Population

First, we introduce our Commonsense Knowledge Base Population problem formulation

and benchmarking.

Throughout the development of automated commonsense understanding, Common-

Sense Knowledge Base (CSKB) is an important form of automatic commonsense reasoning

system to store knowledge sources for drawing inferences. With expert-curated relations

and human annotations, CSKBs such as ConceptNet [12], ATOMIC [55, 10], and GLU-

COSE [1] are developed to study commonsense regarding properties of objects, causes and

effects of events and activities, motivations and emotional trajectories of humans on specific

circumstances, and so on.

First, the knowledge acquired by those CSKBs is based on crowdsourcing, which is

relatively more expensive than other automatic information extraction methods. To scal-

ably acquire new knowledge, COMET [56] is proposed to finetune a large pre-trained lan-

guage model (i.e., GPT [36]) with existing commonsense knowledge bases (for example,

ATOMIC) such that they can automatically generate reasonable commonsense knowledge.

Even though COMET can generate high-quality commonsense knowledge with the super-

vised learning approach, it tends to fit the training data too well to generate novel con-

cepts and knowledge. This is usually called a selection bias problem in statistical analy-

sis [53, 57].

On the other hand, although information extraction may also be subject to reporting

bias [52], where the frequencies may not truly reflect the relative likelihood in the real
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world, it can provide many candidate examples that can be evaluated by a machine learning

model trained on human-annotated data. Such an automatic extraction approach can easily

scale up to two orders of magnitude larger than human annotations.

To tackle those limitations, we propose to use information-extraction tools to extract

coarse sentence-level discourse relations first. These discourse relations, such as extract-

ing (“I have lunch”, Precedence, “I am full”) from a sentence “I have lunch and then I

am full”, can serve as natural sources to derive inferential commonsense knowledge such

as “If someone X has lunch, then X will be full”. We use an off-the-shelf knowledge

graph, ASER [58, 59], that encompasses billion-scale discourse knowledge, as the source

discourse knowledge, and unify the format of ASER with the format of the target common-

sense knowledge base, ATOMIC. Then, the Commonsense Knowledge Base Population

(CKBP) framework adopts a classifier that is finetuned with gold-standard human-annotated

commonsense knowledge to discriminate whether a discourse knowledge can be converted

to a corresponding commonsense knowledge. The populated results are evaluated based on

accuracy (quality), novelty (how much new knowledge can be acquired), and diversity.
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1.2.2 Reasoning for Commonsense Knowledge Base Population

We present several methods of modeling this classifier, including graph-aware language

modeling, graph neural networks, and semi-supervised learning.

Although it is widely accepted that the graph substructure can be helpful in making

predictions and inferences in entity-centric knowledge graphs [60], existing commonsense

knowledge-based models [56, 40] still treat the prediction as a translational problem for the

triplets in the knowledge base and do not consider the subgraph structures. It is also not

trivial to leverage graph structures in commonsense knowledge acquisition. First, there is

no existing graph structure in the CSKBs, as the labeling procedure only considers the head,

the tail, and their relations. For example, the average degree in ConceptNet and ATOMIC

is ten times smaller than that of regular factual knowledge bases such as Freebase [2].

There are few overlaps between heads and tails, given that both can be arbitrary texts. The

heads and tails can form a bipartite graph, but graph convolution in such a graph may not

provide additional information compared to direct representation learning for nodes be-

cause tails can be conditionally independent given a head. However, with ASER, a more

structural knowledge graph, it is possible to perform more complicated reasoning over the

substructures. Second, as we mentioned, heads and tails are loosely structured texts in both

ATOMIC and ASER, and a contextualized representation model should be applied to them

for better representations. We developed two models, BERTSAGE and KG-BERTSAGE,

which leverage the semantic representation of nodes or edges and graph structures to ag-

gregate contextual information.

Besides graph structure, another dominant feature of the CSKB Population is the im-

balance between labeled data (around one million) and unlabeled data (over two hundred

million). Moreover, as CSKBs inherently provide only ground-truth (positive) examples,

the randomly sampled negative examples in the task are less informative and may lead the

model to overfit artifacts of the dataset. A supervised learning model finetuned on such an

annotated training set is hard to generalize to out-of-domain knowledge space. Therefore,

it is natural to develop a semi-supervised learning algorithm to provide pseudo-positive

and negative labels. We introduce PsuedoReasoner, a pseudo-label-based semi-supervised
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learning algorithm that involves a unique data filtering process and can significantly im-

prove population performance.

1.2.3 Using Commonsense Knowledge for Downstream Reasoning

After acquiring more commonsense knowledge, there are several ways to improve down-

stream commonsense reasoning, such as verbalizing the knowledge into question-answering

pairs for training a question-answering model and regarding the knowledge as input text for

auto-regressive finetuning. We tested our populated knowledge in both settings and found

that the knowledge acquired by CKBP can significantly improve commonsense question an-

swering and generative commonsense inference compared to only using human-annotated

commonsense knowledge.

Large language models need help to effectively perform reasoning when presented with

complex tasks, such as reasoning about multiple events and their relationships. This short-

coming is due to the inherent difficulty of reasoning over multiple pieces of information and

a lack of adequate-scale, supervised training datasets for learning [61]. Unfortunately, com-

plex and multi-hop commonsense reasoning benchmarks [9] are both technically challeng-

ing and financially expensive to curate. Consequently, previous efforts either constructed

datasets (a) with simpler reasoning structures, such as single-hop chains [62], (b) using dis-

tant supervision based on one-hop inference [9], or (c) with human-annotations, but at a

relatively small scale [8].

In this thesis, we construct COM2 (COMplex COMmonsense), a novel commonsense

reasoning dataset using multi-hop queries in commonsense knowledge graphs to construct

question answer pairs requiring complex narrative reasoning. To build this dataset, we use

conjunctive logical queries [63], a subset of First-Order Logical queries that use existential

quantifiers and conjunction. The multi-hop projection operation involves inferring hidden

contexts, while the intersection operation enables reasoning among multiple events, encom-

passing common cause or effect and abduction. We apply those complex reasoning data to

instruction tuning for large language models to enhance models’ complex reasoning ability

significantly.
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Figure 1.2: Roadmap of the thesis.

1.3 Thesis Organization

As shown in Figure 1.2, this thesis is organized as follows. In Chapter 2, we introduce the

relevant works regarding commonsense acquisition, commonsense reasoning, and complex

reasoning. In Chapter 3, we present the first work of Commonsense Knowledge Base Pop-

ulation, which builds fundamentals of converting discourse knowledge to commonsense

knowledge. Such a pipeline can provide accurate, novel, and diverse commonsense knowl-

edge at scale without extra human annotation efforts. In Chapter 4, we benchmark the

process of the Commonsense Knowledge Base Population by unifying four popular com-

monsense knowledge bases of different topics to make it comprehensive. We provide a

human-annotated evaluation set of around 30K examples to evaluate the models’ common-

sense population ability. On top of this, a Graph Neural Network-enhanced method is also

introduced to improve structured commonsense modeling. In Chapter 5, we investigate

CKBP from the angle of semi-supervised learning, as the already human-annotated CSKB

can be considered as labeled data, and that information-extracted candidate knowledge is

natural unlabeled data. We build a pseudo-label-based semi-supervised learning frame-

work with a quality filter and influence function filter to improve the quality of pseudo

labels. Chapter 6 introduces the experiments on leveraging populated knowledge for down-
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stream commonsense question answering and generative commonsense inference. Next, in

Chapter 7, we go beyond the Commonsense Knowledge Base Population and investigate

reasoning based on Commonsense Knowledge Bases. We formally define complex reason-

ing based on logical queries on CSKBs and study how language models perform on this

complex reasoning task.
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CHAPTER 2

RELATED WORKS

This thesis focuses on how to effectively acquire commonsense knowledge at scale and

leverage it to enhance the reasoning ability of backbone language models. We thus in-

troduce related works regarding commonsense acquisition (Section 2.1), a non-trivial task

because commonsense is usually implicit and often omitted in human language for efficient

communication [64]. Then, we introduce machine commonsense reasoning (Section 2.2),

including several typical task formats such as commonsense knowledge base reasoning,

commonsense question answering, and leveraging commonsense to help real-world tasks.

Besides one-hop commonsense reasoning, we also study complex reasoning (Section 2.3),

which includes multiple rounds or hops in the reasoning chain.

2.1 Commonsense Acquisition

AI relies heavily on commonsense knowledge, which is essential for its functioning. The

initial step in studying commonsense knowledge is acquiring it. There are three main ap-

proaches to acquiring commonsense knowledge, which we will outline below, namely hu-

man annotation, information extraction, and language model generation. This thesis focuses

on leveraging the advantages of all methods. This includes using information extraction to

acquire large-scale candidate commonsense knowledge, using human-annotated common-

sense knowledge as seeds to train a language-model-powered commonsense classifier, and

harvesting commonsense knowledge at scale.

2.1.1 Human Annotation

Textual Commonsense Human annotation has been a critical part of collecting common-

sense, especially Commonsense Knowledge Bases (CSKB), starting from early pioneer
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works, such as logical formulae in Cyc [31, 65] or textual assertions in OMCS [66], which

is later utilized as a core part of the renowned ConceptNet [12, 32] focused on entity-centric

knowledge. There are also attempts to annotate event-centric/situational knowledge, with

focuses on social commonsense [67, 68]), dialogue [69, 70], and narratives [62], as well as

ATOMIC [55] and ATOMIC-2020 [10] with a range of dimensions of if-then reasoning on

events.

In addition to these flat and one-hop commonsense knowledge formulated in triples,

there is another kind of commonsense representation using conceptualization or abstrac-

tion [71, 72]. Conceptualization basically performs a contextualized IsA relation mapping

to derive higher-order knowledge, for example, deriving “stimulants will refresh people”

from “coffee will refresh people” by conceptualizing “coffee” to a kind of “stimulant.” The

candidates of conceptualized knowledge are usually derived by linking entities or events

to conceptual knowledge bases such as WordNet [73] and Probase [74]. The abstract

knowledge is then manually verified to form a new commonsense knowledge base Ab-

stractATOMIC [71] and AbsPyramid [72].

Besides, recent years researchers start to focus on annotating commonsense in down-

stream applications, such as grounding to narratives or dialogues [75, 76, 77], persona at-

tribution [78, 70], using commonsense for real-world applications [79].

Visual/Multimodal Commonsense In addition to the commonsense knowledge repre-

sented in natural language, commonsense also exists in the vision domain. For example,

the relations between visual objects in the real world can be grounded in the commonsense

relations between concepts. Specifically, Visual Relationship Detection (VRD) [80] is pro-

posed and annotated to study the relations between pairs of objects in images, such as “per-

son riding a bicycle” or “dog chasing a ball.” VisualGenome [81] is later proposed, which

annotates over 108,000 images to study the language descriptions of objects, attributes,

and relations, to improve computer models’ performance on cognitive tasks such as image

description and question answering. Besides those grounded concept-concept relations,

other resources annotate visual abductive commonsense reasoning signals [82], inferential

knowledge of actions, states, and events in images [28], multimodal script knowledge in
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videos [83], and so on.

Despite their high quality, such CSKBs suffer from limited scale and coverage over

various entities and eventualities, as well as potential human bias [84] possibly including

concept bias. This leads to other types of commonsense acquisition to improve coverage

and potentially alleviate bias.

2.1.2 Information Extraction

To scale up the size of CSKBs, automatic extraction from large corpora based on dedicated

schema and templates comes out as an alternative solution [85, 86, 87]. The knowledge

base constructed using Information Extraction (IE) can be classified into three categories

based on the types of the element of knowledge, namely entity-based, eventuality-based,

and statement-based.

Regarding entity-based knowledge bases, KNEXT is an early attempt to mine typical

commonsense propositions from corpora [85], while the renowned ConceptNet is origi-

nally extracted upon the annotations from OMCS [88]. WebChild [86, 87] extracted re-

lations among activities from narrative texts using semi-supervised label propagation via

graph constructed from WordNet and Web data. Regarding eventuality-based knowledge

bases, Knowlywood [87] uses semantic parsing tools to extract verb-(object-)based events

from TV scenes and novels to build an event knowledge graph. VoCSK [89] proposes

a taxonomy-guided induction method for automatically acquiring implicit verb-oriented

commonsense knowledge from verb phrases, employing an entropy-based filter to reduce

noise and a joint model combining the minimum description length principle with a neural

language model to generate concept-level knowledge. ASER [90, 91] proposes a unique

paradigm to retrieve a large-scale CSKB for eventualities as linguistic graphs of predi-

cates and their arguments linked by various discourse relations. Regarding statement-based

knowledge bases, Ascent [92] and Ascent++ [93] present an advanced methodology for cre-

ating a large-scale commonsense knowledge base composed of expressive statements rather

than simple triples, encompassing composite concepts and refined assertions to achieve

superior precision and recall over existing CSK collections, with proven effectiveness in
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supporting QA tasks.

However, without human supervision, such methods suffer from much lower quality

and larger noise despite much their larger scale. Moreover, they are particularly exposed to

reporting bias, including concept bias. Hence such CSKBs alone may not be ideal for our

goal to acquire high-quality knowledge covering various entities and eventualities.

2.1.3 Language Model as Knowledge Bases

Another way of acquiring commonsense knowledge is to generate it directly from language

models. With knowledge from enormous pretraining data internalized into language mod-

els, a pile of works is conducted to mine knowledge from them [39, 94, 95, 96]. One

can simply prompt a vanilla language model with self-defined templates or adopt various

prompt discovery methods [97, 98, 99]. With the development of the capacity of language

models, current backbones such as GPT3 [100], ChatGPT [41], and GPT4 [101] are able to

generate commonsense knowledge with even higher accuracy than humans. Relevant works

include ATOMIC-10x [102], which prompts GPT3 with several in-context exemplars, cou-

pled with a critic filter to determine the final plausibility. NovaCOMET [103] leverages an

auditable discrete knowledge graph, NOVATOMIC, which is constructed using a similar

way of text generation as in ATOMIC-10x but using fewer examples. A T5 [38] 11B model

is used as the backbone to fine-tune a better commonsense generator.

Furthermore, they are directly applicable to commonsense reasoning tasks [104]. How-

ever, language models merely based on induction from word co-occurrence may not gener-

alize well to diverse entities and eventualities, which is why we choose to use information

extraction to acquire candidates first and then use language models to discriminate them.
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2.2 Commonsense Reasoning

Commonsense reasoning in artificial intelligence (AI) refers to the ability to make assump-

tions about the nature and characteristics of everyday situations that humans encounter,

similar to how humans would do it. In NLP, several popular commonsense reasoning tasks

exist, including reasoning over CSKBs, commonsense question answering, and common-

sense reasoning in downstream scenarios such as dialogue, narrative, and solving real-world

problems.

2.2.1 Commonsense Knowledge Graph/Base Reasoning

Regarding conventional knowledge bases like Wordnet [34] and Freebases [105], tasks in-

volving completion and population have been well-studied as transductive and inductive

link prediction problems in the field of graph neural network [106, 107, 108, 109, 110].

Methods powered by pre-trained language models have also been studied in these tasks

thanks to the models’ representation power [111]. Besides completion tasks on conven-

tional entity-centric KBs like Freebase, completion tasks on CSKBs are also studied on

ConceptNet and ATOMIC. Bi-linear models are used to conduct triple classification on

ConceptNet [112, 113]. Besides, knowledge base embedding models plus BERT-based

graph densifier [2, 114] are used to perform link prediction. Specific to the CSKB Popu-

lation task, [115] proposed KGBertSAGE, a combination of KG-BERT [111] and Graph-

SAGE [116]. The model performed better over baselines yet still suffered from the out-of-

domain problem.

Another line of commonsense knowledge base reasoning is the commonsense knowl-

edge base population, which is the main focus of this thesis. Specific to CSKB Population

task on CKBP v1, [115] proposed KGBertSAGE, a combination of KG-BERT [117] and

GraphSAGE [116]. The model showed higher performance over baselines yet still suf-

fered from the out-of-domain problem. The follow-up work PseudoReasoner [118] em-

ploys the pseudo-labeling technique to solve that problem. Despite the significant gain in

performance, PseudoReasoner is still far from human performance, suggesting that CKBP

remains a challenging task in commonsense reasoning.
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2.2.2 Commonsense Question Answering

Besides curated commonsense knowledge bases or graphs, a large number of reasoning

tasks under commonsense relations are developed among domains like social interaction,

spatial and temporal relations, and causes or effects of events. The most popular empirical

task is Commonsense Question Answering. Ever since COPA [119], many Commonsense

QA datasets have been developed regarding general commonsense in human’s daily lives,

including CommonsenseQA [120] and CosmosQA [121]. With the trend of investigating

social and situational scenarios, SWAG [20], SocialIQa [20], and Dream [122] are pro-

posed as benchmarks concentrated on social environment or human dialogues. Moreover,

numerical or physical commonsense datasets like VerbPhysics [123], NumerSense [124],

and PhysicalIQA [125] are proposed to test neural models reasoning ability about naive

physics and numerical senses.

2.2.3 Real-world Commonsense Reasoning

Besides purely testing the knowledge-understanding ability of AI systems, another line

of commonsense reasoning tasks involves studying the commonsense reasoning ability of

models in real-world tasks, such as dialogue systems, narrative understanding, and social

interactions. For example, ComFact [75] studies the grounding and linking of common-

sense knowledge in dialogues and narratives. Peacok [70] studies the persona attributes for

improving more engaging and human-like dialogues. Crow [79] studies commonsense in

different aspects, such as physical, temporal, and social reasoning.
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2.3 Complex Reasoning

2.3.1 Complex Logical Query

Recent years have witnessed significant progress in reasoning on one-hop relational data [106,

126, 127]. In addition to one-hop reasoning, further works have explored handling com-

plex logical structures, involving reasoning on unobserved edges and multiple entities and

variables [128, 129, 130, 131]. In this thesis, we focus on conjunctive logical queries [63],

a subset of first-order logic that is defined with logical operators such as existential quan-

tifiers ∃ and conjunctions ∧. Conjunctive logical queries require a set of anchor entities,

V , a unique target entity V? representing the answer to the query, and a set of existential

quantified variables V1, · · · , Vm, and are defined as the conjunction of literals e1, · · · , en:

q = V?, ∃V1, · · · , Vm : e1 ∧ e2 ∧ · · · ∧ en (2.1)

where ei is an edge involving variable nodes and anchor nodes, satisfying ei = r(vj, Vk), Vk ∈

{V?, V1, · · · , Vm}, vj ∈ V , r ∈ R, or ei = r(Vj, Vk), Vj, Vk ∈ {V?, V1, · · · , Vm}, j ̸= k, r ∈

R. R is the set of relations defined in the KB.

Previous efforts on answering logical queries on knowledge graphs focus on construct-

ing box embeddings [128], embeddings based on beta distributions [132], particle sim-

ulations [133], and computation tree optimization [134]. Other related works focus on

leveraging two-hop projection and intersection queries in ConceptNet to improve common-

sense question answering [135], inferring missing entities in verbalized complex queries

on factual knowledge graphs [136], and developing an LLM agent for complex operators

within the KG [137]. Instead of relying on embeddings or limited query types for matching

synthetic logical queries, we leverage the concept of logical queries to effectively acquire

complex reasoning data from CSKGs with minimum human effort.

2.3.2 Complex Reasoning in Natural Language Processing

There has been a surge of complex reasoning tasks in NLP in general [61], including com-

positional reasoning [138, 139], knowledge retrieval [140, 141], grounding [142], and

17



complex commonsense reasoning such as reasoning on complex narratives or multiple

events [8, 9]. In these NLP tasks, the common feature is that they require reasoning

over multiple pieces of information. For example, compositional reasoning, such as Strate-

gyQA [138], requires multi-step reasoning based on some retrieved evidence. In knowledge

retrieval tasks such as HotpotQA [140], multiple paragraphs from different Wikipedia pages

are used as supporting evidence for performing reasoning. In commonsense reasoning, for

the single-hop tasks such as CommonsenseQA [120] or SocialIQA [21], even though the

knowledge required to solve the problems is usually single-hop, it requires an implicit pro-

cess of grounding the context to implicit commonsense knowledge, which contributes to

the complexity of reasoning.

To tackle complex reasoning, typical methods include knowledge augmentation and

chain-of-thought prompting. Knowledge-augmented methods usually involve a module

to retrieve relevant knowledge and a module to encode the knowledge to be fused to the

main reasoner, e.g., an LLM. Typical methods include KagNet [143], MHGRN [144],

QAGNN [145], and GreaseLM [146], which encodes the relevant knowledge retrieved

from a knowledge graph and then use Graph Neural Networks to encode the supporting

knowledge graph. Another popular line of work is Dense Passage Retrieval (DPR) [147],

which retrieves and embeds Wikipedia passages as supporting facts. In the era of Large

Language Models, a dominant approach to solving complex tasks is Chain-of-thought

(CoT) [148, 149]. The idea is to encourage language models to generate the rationales

or reasoning steps implicitly during the prompting of LLMs. This is also considered as an

“emergent ability” of language models where CoT can significantly improve the reasoning

performance on complex tasks. There are also variants for CoT which include decomposing

the reasoning questions to sub-questions (Least2Most [150]), chain-of-though with active

learning [151], deductive verification [152], abstraction [153], self-consistency [154], and

so on.
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CHAPTER 3

MINING LARGE-SCALE COMMONSENSE

KNOWLEDGE FROM DISCOURSE

KNOWLEDGE

In this chapter, we first study the possibility of transferring linguistic knowledge to if-then

situational commonsense knowledge.

3.1 Preliminary

Understanding commonsense knowledge has long been one of the ultimate goals of the ar-

tificial intelligence field. To achieve that goal, many efforts have been devoted to acquiring

commonsense knowledge. For example, ConceptNet [32] (originally known as Open Mind

Common Sense (OMCS) [12]) and OpenCyc [65] leverage expert annotation and integra-

tion of existing knowledge bases to acquire high-quality commonsense knowledge about

human-defined relations. The majority of these relations are factoid commonsense such as

isA, partOf, attributeOf, etc. Recently, the focus of sequences of events and the social com-

monsense relating to them has drawn a lot of attention. ATOMIC [56] is such a knowledge

base about inferential knowledge organized as typed if-then relations with variables being

events and states. Different from traditional knowledge bases, events and states are usually

more loosely-structured texts to handle diverse queries of commonsense represented by our

natural language. Though being potentially useful for solving commonsense reasoning ap-

plications, such kind of commonsense knowledge also brings new challenges for machines

to acquire new knowledge of the similar type and make inferences.

3.1.1 Limitations of Current Commonsense Acquisition Methods

First, the knowledge acquired by ATOMIC is based on crowdsourcing, which is relatively

more expensive than other automatic information extraction methods. To overcome this
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I am hungry

I have lunch
I am tired

I am full

he cooked dinner

Reason (6)
I sleep

Result (10)

Result (5)

Conjunction (2)
Synchronous (2)

X be hungry have lunchX want to

X have lunch X be fullEffect on XX have lunch hungryX's Attribute

I have dinner

ASER
Eventuality Graph

Conjunction (8)

X cook dinner Y have dinnerEffects on Y

I am hungry, so I have lunch later.

Figure 3.1: An illustration of DISCOS. Eventualities from ASER are connected by directed
edges denoting the corresponding discourse relationships. DISCOS aims to transform the
discourse edges in ASER to if-then commonsense edges. For example, an ASER edge
(“I am hungry,” Result, “I have lunch”) will be transformed to (if “X be hungry,” then X
Want to, “have lunch”) commonsense tuple. Other discourse edges can also entail other
commonsense relations.

problem, COMET [56] is proposed to finetune a large pre-trained language model (i.e.,

GPT [36]) with existing commonsense knowledge bases (for example, ATOMIC) such

that they can automatically generate reasonable commonsense knowledge. Even though

COMET can generate high-quality, complex commonsense knowledge with the supervised

approach, it tends to fit the training data too well to generate novel concepts. This is usually

called a selection bias problem in statistical analysis [53, 57].

On the other hand, although information extraction may also be subject to reporting

bias [52], where the frequencies may not truly reflect the relative likelihood in the real

world, it can provide many candidate examples that can be evaluated by a machine learning

model trained on human-annotated data. For example, ASER [58] uses frequent syntactical

patterns to extract eventualities (such as activities or processes, events, and states) in a de-

pendency parse of a sentence. Then it forms linguistic relations between eventualities based

on discourse markers (such as “and,” “but,” etc.) Such an automatic extraction approach can
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easily scale up to two orders of magnitude larger than human annotations. However, it is

not trivial to leverage such a knowledge resource. First, ASER and ATOMIC have different

formats. As shown in Figure 3.1, the knowledge in ASER is mostly natural language, for

example, “I am hungry,” whereas, in ATOMIC, person entities are mostly aggregated, for

example, “Person X be hungry.” Thus, aligning ATOMIC with ASER requires additional

efforts to explore both knowledge bases in depth. Second, while some discourse relations

extracted in ASER can naturally reflect the if-then relations, they are not all valid for each

of the if-then relations, with variables being events and states. For example, a Succession

relation in ASER, which is usually extracted by connectives such as “after” and “once,”

cannot be used as a candidate relation for the Stative relation in ATOMIC because by defi-

nition, the Stative represents the state of the agent at the same time or before the base event

happens, which is opposite from the chronological order of Succession.

Last but not least, although it is widely accepted that the graph substructure can be help-

ful in making predictions and inferences in entity-centric knowledge graphs [60], existing

commonsense knowledge-based models [56, 40] still treat the prediction as a translational

problem for the triplets in the knowledge base and do not consider the subgraph structures.

It is also not trivial to leverage graph structures in commonsense knowledge acquisition.

First, there is no existing graph structure in ATOMIC, as the labeling procedure only con-

siders the head, the tail, and their relations. There are few overlaps between heads and tails

given that both can be arbitrary texts. The heads and tails can form a bipartite graph, but

graph convolution in such a graph may not provide additional information compared to di-

rect representation learning for nodes because tails can be conditionally independent given

a head. However, with ASER, which is a more structural knowledge graph, it is possible

to perform more complicated reasoning over the substructures. Second, as we mentioned

that heads and tails are loosely-structured texts in both ATOMIC and ASER, a contextual-

ized representation model should be applied to them for better representations. As a result,

when developing a graph-based model for commonsense acquisition, both the scalability

and effectiveness should be carefully considered.

To address the above challenges, in this section, we propose a new commonsense
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knowledge acquisition framework, DISCOS (from DIScourse knowledge to COmmon-

Sense knowledge), which leverages the large-scale eventuality-centric discourse knowledge

in ASER to enrich the inferential commonsense knowledge in ATOMIC. Figure 3.1 shows

an example of the results. Different from existing mechanisms such as tail node prediction

adopted in COMET [56] and link prediction in knowledge base completion tasks used by

KG-Bert [111], we propose a knowledge base population approach for DISCOS. This can

be done by first mapping ATOMIC nodes to ASER nodes, and then performing a trans-

ductive learning algorithm which is based on both contextualized text representation (i.e.,

BERT [35]) and a graph-related representation (i.e., graph neural networks [116]) to ag-

gregate neighborhood information to jointly make decisions on whether we can populate

the ATOMIC relations to a pair of ASER nodes. Experiments demonstrate that the pro-

posed model inherits the advantage of both text and graph representation learning models.

Compared with the learning method trained on ATOMIC only, we significantly improve the

novelty and diversity of the acquired commonsense knowledge, with comparable accuracy.

Extensive analyses are conducted to analyze the strengths and limitations of DISCOS.

3.1.2 Task Definition

The task of acquiring commonsense knowledge from discourse knowledge graphs is defined

as a Commonsense Knowledge Base Population (CKBP) task. The seed commonsense

knowledge base is denoted as C = {(h, r, t)|h ∈ H, r ∈ R, t ∈ T }, where H, R, and T

are the set of the heads, relations, and tails, respectively. Suppose we have another much

larger knowledge graph extracted from texts via discourse relations, denoted as G = (V , E),

where V is the set of all vertices and E is the set of edges, storing the discourse relations

among eventualities.

The CKBP model is trained using a link prediction task over the aligned graph Gc that

contains both the edges from G and C. The ground truth edges are the corresponding edges

from the source commonsense knowledge base C. After learning the edge information from

C, in the inference process, the model is asked to predict plausible tail t given head h and

relation r as input. Specifically, there are two settings for the inference process: (1) Existing
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Figure 3.2: ATOMIC relation definition. The relations are categorized based on chronolog-
ical order and the subject of events. (1) cause_agent: What causes the agent (X) to do the
events. (2) stative: What is the state of the agent (X). (3) effect_agent: What are the effects
on the agent (X). (4) effect_theme: What are the effects on the theme (Others).

head: Predict tails given head h from the original C, (2) Novel head: Predict tails given head

h from G that does not appear in C. While previous works [55, 56] adopt the first setting,

we argue that the second setting can generate commonsense knowledge in a much larger

scale, considering that G is much larger.

3.1.3 ATOMIC

We adopt ATOMIC [55] as the seed commonsense knowledge C. ATOMIC consists of

880K tuples across nine relations about day-to-day if-then commonsense knowledge (for

example, if X feels hungry, then X wants to have lunch.) Different from structured or

canonical knowledge bases, the nodes in ATOMIC are in the form of free-text, which is

more expressive in representing everyday commonsense but also makes the matching and

generation harder. As shown in Figure 3.2, the nine relation types span over four categories,
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which are classified based on the order of time and the subject of the events. Detailed

illustrations can be found in Figure 3.2.

3.1.4 ASER

ASER [58], a large-scale eventuality-centric knowledge graph that provides explicit dis-

course relationships between eventualities, is used as the source of discourse knowledge

graph G. We use the core part of ASER, which consists of 15 discourse relation types and

10M discourse edges among 27M eventualities. As illustrated in Figure 3.1, the discourse

relation (“I am hungry,” Result, “I have lunch”) can be potentially transformed to if-then

commonsense knowledge, i.e., (“X be hungry,” X want to, “have lunch.”)

Our contributions can be summarized as follows.

• We formulate commonsense acquisition as a Commonsense Knowledge Base Popu-

lation (CKBP) task, and propose a novel framework, DISCOS, to populate the inferential

if-then commonsense knowledge in ATOMIC to an eventuality-centric discourse knowledge

graph ASER.

• In DISCOS, we develop a model named BERTSAGE to jointly leverage the textual

representation and graph representation to discriminate commonsense knowledge. This

model can be used as a general approach for commonsense knowledge base population.

• We not only systematically evaluate our framework with commonly used evaluation

metrics such as novelty and accuracy using both benchmark dataset and human evaluations,

but also thoroughly analyze our models and results as well as the patterns shown in both

ATOMIC and ASER to demonstrate that incorporating information extraction results in

ASER to enrich the if-then relations can indeed provide larger-scale qualified commonsense

knowledge.

3.2 The DISCOS Acquisition Pipeline

The overall framework of DISCOS is shown in Figure 3.3. First, the subjects of events in

ATOMIC and ASER are quite different; where in ATOMIC the subjects are placeholders
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Figure 3.3: DISCOS overview. First, ATOMIC tuples are mapped to ASER format to ac-
quire candidate commonsense knowledge neighbors from discourse edges in ASER. Then
BERTSAGE is used to discriminate whether a (h, r, t) tuple is plausible or not.

like “PersonX” and “PersonY,” while in ASER they are concrete personal pronouns like

“she” and “he.” So, in order to align the two resources to perform Commonsense Knowl-

edge Braph Population, we first map all heads and tails in C (ATOMIC) into G (ASER). For-

mally, we need a mapping function M(s) to map the input string s into the same format of

nodes in G, such that we can find as many (h, r, t) ∈ C tuples as possible that can be matched

to G using M(h) and M(t) operations. Next, we leverage a rule D(v, r), v ∈ V , r ∈ R,

to select candidate discourse edges in G, given a node v = M(h), h ∈ H and a com-

monsense relation r. After finding all candidate discourse edges under relation r, denoted

as L(r) = {(u, v)|(u, v) ∈ E}, we employ a novel commonsense knowledge population

model, BERTSAGE, to score the plausibility of the candidate commonsense tuple (v, r, u).

This framework is not restricted to the resource of ATOMIC and ASER but can be well

generalized to other resources, as one can change the mapping rules accordingly and use

the BERTSAGE model flexibly. Details about each step are introduced as follows.

3.2.1 Aligning ATOMIC and ASER

In ATOMIC, the nodes are eventualities with “PersonX” and “PersonY” as subjects or ob-

jects. However, in ASER, the corresponding eventualities are nodes with concrete personal
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s v oSubject 
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Figure 3.4: An illustration of the alignment between ATOMIC and ASER. We replace the
placeholders “PersonX” and “PersonY” with concrete singular personal pronouns, and add
subjects to ATOMIC tails to make them complete sentences.

pronouns, for example, I, she, Alex, and Bob. In addition, as the tails in ATOMIC are writ-

ten by human annotators, the formats can be arbitrary, and sometimes subjects are missing

from tails. To effectively align the information in ATOMIC and ASER, based on the above

observations, we propose best-effort rules to convert ATOMIC nodes into the format of

ASER, as shown in Table 3.1. Examples of the mapping process are shown in Figure 3.4.

After conducting the string substitution operations, we use the parser in ASER to parse the

acquired text into standard ASER format.

The mapping statistics are shown in Table 3.2, where the average percentage of ATOMIC

nodes that can be detected in ASER, denoted as coverage, is 62.9%. It is worth noting that

the relation with the highest coverage is xAttr, where the tails are mostly adjectives. By

adding a personal pronoun and a be in front of the xAttr tail, we can find most stative

eventualities in ASER.

We further study the dependency pattern distribution of ATOMIC heads. The head

events of ATOMIC are extracted from various corpora, including Google Ngrams and Wik-

tionary idioms. The definitions of events [55] are similar to that in ASER. We examine

the coverage of their dependency patterns using the parser defined in ASER. There are 13

eventuality dependency patterns defined in ASER, as suggested in the paper [58], for exam-

ple, s-v-o, s-v-o-p-o (‘v’ for normal verbs other than ‘be’, ‘n’ for nouns, ‘a’ for adjectives,
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Figure 3.5: Pattern distribution of ATOMIC heads and eventualities in ASER.

and ‘p’ for prepositions.) The distribution of ATOMIC head patterns and ASER patterns

is presented in Figure 3.5. The Pearson r between the distribution of ATOMIC pattern and

ASER-core pattern is 0.8136, with p < 0.01, showing consistency of ATOMIC and ASER.

The syntactical patterns can be used to select eventualities when matching. For example, in

“xAttr” relation, we restrict the candidate tails in ASER to be of syntactical patterns “s-v-a”

and “s-v-o.”

3.2.2 Discourse Knowledge Graph Preparation

We then introduce how to select candidate discourse edges from ASER. For a given node

u and a relation r, we find the edges based on the rule D(u, r). As we are studying if-

then relations, the candidate discourse edges in ASER should be consistent with the order

of time in the ATOMIC relation r. For example, for a commonsense tuple (h, r, t) in the

effect_agent category, the event t is an effect of h and thus t should happen at the same time

or after the event h. To retrieve ASER discourse edges with the same temporal logic, we

first reconstruct an ASER subgraph by selecting specific edge types based on an ATOMIC

relation r with rules illustrated in Figure 3.6.

We use the effect_agent category as an example. For a given node u ∈ V , we select

the directed (u, v) pairs from ASER, such that there exists either an edge (u, v) ∈ E where

the edge types are among discourse relations Precedence and Result, an edge (v, u) ∈ E

where the edge types are among Succession, Condition, and Reason, or there exists an
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Mapping rules

Head Replace PersonX and PersonY with I/he/she/man/women/person

Tail

xWant/oWant/
xIntent/xNeed

Add a personal pronoun in front of the tail and remove the initial “to”

xEffect/oEffect Add a personal pronoun in front of the tail
xReact/oReact Add a personal pronoun and “be” in front of the tail

xAttr Add a personal pronoun and “be” in front of the tail

Table 3.1: Mapping rules from ATOMIC to ASER.

e ∈ {(u, v), (v, u)} such that the edge types of e is among Synchronization and Conjunction.

In this way, all the selected directed tuples (u, v) represent the same temporal order as in

the ATOMIC relation r.

In the next step, we need to distinguish the theme categories from agent categories. For

relations under effect_theme, only eventuality pairs (u, v) with different personal pronouns

are selected as candidate knowledge, while for other agent-based categories, we select even-

tuality pairs with the same personal pronouns. After this process, combined with all the

mapped ATOMIC nodes, we collect all selected edges from G, to form an ASER-induced

directed graph Gr = (Vr, Er) for each relation. Vr is the set of vertices that includes both

vertices from G and the aligned version of C, and Er is the set of reconstructed edges accord-

ing to the discourse knowledge selection rules defined above. Here, an edge (u, v) ∈ Er

can be viewed as a candidate “if u, then v” relation under r.

After that, we aggregate the nodes in Gr by conducting personal pronoun substitution.

For the agent-based relations, considering an edge (ur, vr) ∈ Er, we replace the common

personal pronouns in ur and vr as “PersonX,” to be consistent with the ATOMIC format.

For other personal pronouns, we map them to “PersonY” and “PersonZ” according to the

order of their occurrences. For the theme-based relations, we replace the subject of ur with

“PersonX” and vr with “PersonY.” After the personal pronoun substitution operation, we

can acquire a unified discourse knowledge graph Gc
r = (V c

r , E
c
r) in the same format as

ATOMIC. The corresponding statistics of all Gc
r are shown in Table 3.2.
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Figure 3.6: Discourse knowledge extraction rules for different relation categories. The
coral edges represent candidate ASER directed edges to be selected for a certain relation
category. The dotted blue edges represent the reconstructed edges in Gr.

3.2.3 Commonsense Knowledge Base Population with BERTSAGE

In our framework, we train a CKBP model on the aligned graph Gc
r.

The basic goal of each step in CKBP is to classify whether a candidate discourse knowl-

edge tuple (u, v) ∈ Ec
r is a plausible if-then commonsense knowledge under relation r. We

use the commonsense tuples provided by ATOMIC as the seed ground truth edges. For the

negative examples, we explore several different sampling strategies:

• RAND (RANDOM): Randomly sample two nodes (u, v) from Gc
r such that (u, v) /∈ Ec

r .

• O (Others): Randomly sample two nodes (u, v) from other relations such that (u, v) ∈

Ec
r′ , r

′ ∈ R, r′ ̸= r. These negative samples will help the model to distinguish different

commonsense relations.

• I (Inversion): Randomly sample a tuple (u, v) ∈ Ec
r and add the inversion (v, u) as

negative samples. This is used to help the model understand the causal if-then relationships,

when the input tuples have similar semantic meanings
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ATOMIC ASER Gc
r

Coverage(%) #nodes #edges #nodes #edges
oEffect 31.1 25,328 57,801 170,086 381,135
oReact 87.3 22,970 59,839 95,169 320,543
oWant 61.6 38,892 107,588 177,057 424,409
xAttr 95.8 32,959 174,429 167,869 698,785
xEffect 33.1 43,840 78,644 217,416 721,079
xIntent 33.8 33,789 46,789 179,665 625,144
xNeed 52.9 51,206 92,428 207,317 698,770
xReact 88.7 32,670 99,162 145,216 528,918
xWant 58.8 61,149 114,217 220,786 724,546
Head 56.3 - - - -
Average 62.9 38,089 92,322 175,620 569,259

Table 3.2: Mapping statistics. The ATOMIC columns show the nodes and edges statistics
of the graph produced by tuples in ATOMIC. The ASER Gc

r column shows the statistics of
the ASER-induced graph for a relation r after personal pronoun aggregation.

• S (Shuffling ATOMIC): Randomly select u from the set of ATOMIC heads, and v from

the set of ATOMIC tails under relation r. Add a negative sample if (u, v) is not connected

by an existing ATOMIC edge. This mechanism will prevent the model from assigning high

scores only to nodes that have appeared in the ATOMIC training set.

To effectively encode both the semantic meaning of eventuality nodes and their neigh-

bors on the overall graph, as shown in the right part of Figure 3.3, we propose a model

BERTSAGE that contains two components: (1) a node encoder based on BERT that embeds

the semantic meaning of nodes; (2) a graph encoder that learns and aggregates relational

information from the discourse graph. The details are as follows.

• Node encoder: We use the pre-trained language representation mode BERT [35] to en-

code all the nodes in the dataset. For a node v = [w1, w2, · · · , wn] with n word tokens,

we add a [CLS] token in the beginning of each sentence as w0 and a [SEP] token at the

end of it as wn+1. We denote the contextualized representation provided by BERT as

[ew0 , ew1 , · · · , ewn+1 ], ewi
∈ Rd, where d is the dimension of BERT embeddings, ew0 and

ewn+1 are the embedding of [CLS] and [SEP] tokens, respectively. We then use the average

pooling to acquire the final node representation as ev =
∑n+1

i=0 ewi
/(n+ 2).

• Graph encoder: To effectively encode the semantics from neighbor events on the dis-

course graphs, we propose to use GraphSAGE [116] to aggregate the neighbor information
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Model oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant
BERT 90.60 97.05 93.95 96.21 87.85 89.69 89.93 93.96 89.73
BERTSAGE 91.10* 97.29 94.21 96.33 89.49* 90.48* 91.10* 94.02 90.91*

Table 3.3: Evaluations on the CKBP link prediction experiments. We report the accu-
racy in test set here as the number of positive and negative samples are balanced. * after
bold figures indicates that the improvement of BERTSAGE model is significant with z-test
p < 0.05.

of a given node v.

Given a node v, we first acquire its contextualized representation ev, and then calculate

the embeddings of v’s neighbors in Gc
r, which are denoted as N (v). Here, N (v) is a fixed

size neighbor set uniformly sampled from all the neighbors of v. The hidden representation

after the GraphSAGE layer hv is computed as follows:

hN (v) ← AGGREGATE({eu, ∀u ∈ N (v)}), (3.1)

hv ← σ(W · CONCAT(hv,hN (v))). (3.2)

• Output layer: For an input candidate tuple (u, v) ∈ Gc
r, on top of the overall representa-

tion given by BERTSAGE [hu,hv], we apply an output layer fr(u, v) = Softmax([hu,hv]W
′⊤+

b), W ′ ∈ R2×d, b ∈ R2 to make the final prediction.

3.3 Experiments

We introduce the experimental settings and results of all the experiments in this section.

Both learning and inference processes in Section 3.1.2 are studied here. For the learning

part, the task is a link prediction task, and thus, we evaluate the performance automati-

cally using accuracy based on the existing annotated commonsense knowledge as positive

examples and automatically sampled edges as negative examples. For the inference part,

as the goal to acquire novel commonsense knowledge is similar with previous works in

ATOMIC [55] and COMET [56], we adopt human evaluation to evaluate the quality of

the newly acquired knowledge, and then use novelty and diversity as additional evaluation

metrics accordingly.
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3.3.1 Learning for CKBP

Settings We first train the BERTSAGE model for Commonsense Knowledge Base Pop-

ulation. We evaluate the performance of link prediction using accuracy. We use the edges

derived from ATOMIC as positive examples. 20% of the negative examples are randomly

sampled using O, 10% of them using I, and the rest using RAND, as defined in Section 3.2.3.

Detailed ablation studies about negative sampling techniques are presented in Section 3.4.1.

Considering that Gc
r is much larger than ATOMIC, we restrict the size of Gc

r in the following

ways. (1) We only select the subgraph of Gr, which is induced by the one-hop neighbors

of all the ATOMIC nodes. (2) For the subgraph acquired in the first step, we add two-hop

neighbors into the graph for the nodes whose degrees are less than a threshold k. k is set to

20 in practice. We use bert-base-uncased1 [35] as the encoding layer for the classification

model and the dimension of the hidden embeddings is 768. For the neighbor functionN (u),

we set the neighbor size to be 4. The batch size is set to 64. We use the train/dev/test split

defined in ATOMIC [55]. To clearly show the contribution of the proposed BERTSAGE

model, we compare it with a modified version of KG-Bert [111], denoted as BERT baseline

for short, on the link prediction task. The only difference between BERTSAGE and BERT

is that we incorporate the semantics about neighboring events to get the final representation

in BERTSAGE. We use the same setting for BERT as defined above, except for the graph

module.

Result We report the accuracy of the CKBP models on the test set with prepared negative

edges. From the results in Table 3.3, we can see that adding a GraphSAGE layer over the

BERT baseline will improve the classification results on all relation types. These results

prove our assumptions that adding information about the neighbor events on the discourse

graph can help generate better event representations. Among nine relations, the improve-

ments are significant with z-test p < 0.05 on five types. One interesting finding is that this

improvement is in positive correlation with the graph complexity in Table 3.2. In general,

GraphSAGE will contribute more to the performance when the graph is more complex.

1https://github.com/huggingface/transformers
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dist-1 dist-2
relations COMET DISCOS COMET DISCOS
oEffect 60.3 66.7 76.3 89.3
oReact 35.5 33.5 13.5 35.9
oWant 46.6 69.0 84.1 93.8
xAttr 8.3 26.0 4.2 27.4
xEffect 58.4 67.2 81.8 90.4
xIntent 42.9 61.5 75.7 87.3
xNeed 41.4 63.6 75.7 88.4
xReact 27.1 29.3 12.1 32.9
xWant 42.2 65.3 78.7 91.5
Average 38.3 52.9 55.0 70.0

Table 3.4: Diversity grouped by all the relations for the existing head setting in the inference
process. We report the diversity of the top 10 generations or retrieval of COMET and
DISCOS. Dist-k indicates the proportion of unique k-grams.

3.3.2 Inference for CKBP

Settings We evaluate the capability of the above BERTSAGE model with the inference

part for acquiring new commonsense knowledge in CKBP. The goal of the inference part

is similar to that in COMET. As there is no ground truth for the newly generated nodes or

edges, we conduct human evaluation for the quality. Besides accuracy, we also use auto-

matic metrics related to novelty and diversity to demonstrate the properties of the acquired

commonsense knowledge. While COMET uses a neural generation method to generate

tails, in DISCOS we use BERTSAGE to rank the candidates provided in ASER given heads

and relations. Similar to COMET, for the existing head setting introduced in Section 3.1.2,

we propose to evaluate the acquired commonsense knowledge from all three perspectives,

i.e., quality, novelty, and diversity. While for the novel head setting, as the heads are already

novel, we only evaluate the Quality of the retrieved knowledge.

• Quality: We evaluate the quality of acquired commonsense knowledge using anno-

tators from Amazon Mechanical Turk (AMT.) For each relation in ATOMIC, we randomly

sample 50 head events from the testing set and ask the annotators if they think the gener-

ated tuple makes sense. For COMET, we use beam 10 top 10 as the decoding mechanism

to generate 10 commonsense knowledge for each head event. For DISCOS, we select the

tuples ranked top 10 by the BERTSAGE model.

• Novelty: We first evaluate the novelty of acquired commonsense knowledge with two
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novelty indicators, the proportion of generated tails that are novel (NTt), and the proportion

of novel tails in the set of all the unique generated tails (NUt.)

• Diversity: Last but not least, considering that the novelty is evaluated based on string

match, which cannot effectively distinguish whether a system is generating many different

novel concepts or just similar but not identical concepts. Following previous works [155,

156], we report diversity indicators dist-1 and dist-2, the proportion of distinct unigrams

and bigrams among the total number of generated unigrams and bigrams. We evaluate the

diversity of generated knowledge given the same head and relation and calculate the average

among all the heads.

For COMET, we use the publicly available official implementation2. All the experimen-

tal settings are the same as in the original paper. Similar to the decoding mechanisms in the

COMET paper, we use beam search top k to retrieve k generated tails.

Result The overall quality3, novelty, and diversity of COMET and DISCOS are shown in

Table 3.7, 3.6, and 3.4, respectively. From the results, we can make the following obser-

vations. Based on our crowd-sourcing results, DISCOS can achieve comparable or better

quality on effect_theme relations (oEffect, oReact, and oWant) and cause_agent relations

(xIntent and xNeed) among the nine relations. The results indicate that rich commonsense

knowledge is indeed covered by the discourse graph and the proposed DISCOS framework

can effectively discover them. At the same time, we also notice that DISCOS can sig-

nificantly outperform COMET in terms of novelty. For example, for some relations like

xAttr, oReact, and xReact, COMET hardly generates novel tails despite increasing the size

of beam search while a large portion of the DISCOS knowledge is novel. One reason be-

hind this is that COMET fits the training data too well, and the training set is similar to the

test set. As a result, it tends to predict the concepts it has seen in the training set rather

than something new. Last but not least, similar to the novelty, DISCOS also outperforms

COMET in terms of the diversity, which is mainly due to the limitation of beam search

2https://github.com/atcbosselut/comet-commonsense

3We present the original human annotation results from the ATOMIC paper as a reference. However, as we
employ different annotators, they are not comparable with our results.
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as it often generates very similar sentences. As DISCOS is a classification model rather

than a generation model, it does not suffer from that problem. To conclude, compared with

COMET, DISCOS can acquire much more novel and diverse commonsense knowledge with

comparable quality.

To further demonstrate that DISCOS has the potential to acquire commonsense knowl-

edge without the help of human-defined heads, we evaluate it with the novel head setting.

Here, only the relation r is provided, and the model is asked to retrieve the novel (h, t)

pairs from ASER. Specifically, we select the tuples scored higher than 0.5 by the BEST-

SAGE model and randomly sample 100 tuples from each relation for human evaluation.

To make sure the acquired knowledge is not observed by the model, only novel concepts

are evaluated.

From the results in Table 3.7, we can see the potential of DISCOS in directly mining

high-quality novel commonsense knowledge from the raw graph of ASER. For example,

it achieves over 70% accuracy on three relations ( “oEffect”, “xEffect”, and “xReact”.)

Following this experimental setting, we successfully convert ASER into a large scale com-

monsense knowledge base DISCOS-ATOMIC, which contains 3.4 million complex com-

monsense knowledge in the format of ATOMIC, without using any additional annotation

effort.

3.4 Analysis

3.4.1 Ablation Study

In this subsection, we will present ablation studies on the effects of different negative sam-

pling strategies on the link prediction part of the CKBP task. We tried to use the aforemen-

tioned combinations in Section 3.2.3 to generate the negative examples for both the training

and testing set, and present the results of link prediction accuracy4 on the test set in Table

3.5. Specifically, we tried the following combinations:

1. RAND: All the negative examples are sampled randomly from the whole graph.

4We select the xWant relation as an example.
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Test
Train

RAND O20 O20+I10
O20+I10

+S10
RAND 94.40 93.65 93.50 90.88
O20 87.46 91.16 90.93 89.12

O20+I10 87.16 90.72 90.92 89.17
O20+I10+S10 82.80 86.49 86.85 86.53

Table 3.5: Ablation study on different negative sampling methods under xWant relation,
trained using BERTSAGE model. We report the accuracy of the testing set here using the
link prediction task in CKBP.

2. O20: 20% of the negative examples are sampled using the mechanism O.

3. O20+I10: 20% of the negative examples are sampled using the mechanism O and

10% from the mechanism I.

4. O20+I10+S10: 20% of the negative examples are sampled using the mechanism O,

10% from the mechanism I, and 10% from the mechanism S.

We highlight the accuracy ranked highest on O20+I10+S10 test set, the hardest negative

example set. From the result, we can see that, even though the RAND achieves comparable

performance on the simple test set RAND, it suffers a significant performance drop on the

other harder ones. The reason behind is that the randomly selected negative examples can

only help the model to distinguish the ATOMIC positive examples rather than distinguish

the commonsense. This ablation study also demonstrates the importance of including more

diverse negative example generation strategies to cover more signals we want the model

to learn. In the end, we choose to use O20+I10 negative sampling for training in our final

model.
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CHAPTER 4

BENCHMARKING COMMONSENSE

KNOWLEDGE BASE POPULATION

4.1 Preliminary

Commonsense reasoning is one of the core problems in the field of artificial intelligence.

Throughout the development in computational commonsense, commonsense knowledge

bases (CSKB) [32, 55] are constructed to enhance models’ reasoning ability. As human-

annotated CSKBs are far from complete due to the scale of crowd-sourcing, reasoning

tasks such as CSKB completion [112, 2, 157] and population [110] are proposed to enrich

the missing facts. The CSKB completion task is defined based on the setting of predicting

missing links within the CSKB. On the other hand, the population task grounds common-

sense knowledge in CSKBs to large-scale automatically extracted candidates and requires

models to determine whether a candidate triple, (head, relation, tail), is plausible or not,

based on the information from both the CSKB and the large number of candidates which

essentially form a large-scale graph structure. An illustration of the difference between

completion and population is shown in Figure 4.1.

There are two advantages of the population task. First, the population can not only add

links but also nodes to an existing CSKB, while completion can only add links. The popu-

lated CSKB can also help reduce the selection bias problem [53] from which most machine

learning models would suffer and will benefit a lot of downstream applications such as com-

monsense generation [56]. Second, commonsense knowledge is usually implicit knowledge

that requires multiple-hop reasoning, while current CSKBs lack such complex graph struc-

tures. For example, in ATOMIC [55], a human-annotated if-then commonsense knowledge

base among daily events and (mental) states, the average hops between matched heads and

tails in ASER, an automatically extracted knowledge base among activities, states, and

events based on discourse relationships, is 2.4 [11]. Evidence in Section 4.2.5 (Table 4.3)
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?

?

CSKB Completion

CSKB Population Nodes and Edges in CSKB
Nodes and Edges in External KG

climbing mountain

I climb mountain

Drinking water

I drink water

NextActivity

Result
ASER

Knowlywood

X climbs mountain thirsty

Take a restenergetic

xEffect

xAttr
xWant

X drinks waterxEffect?
Align

CSKBCandidate

Figure 4.1: Comparison between CSKB completion and population. An example of align-
ing the eventuality graph with candidate commonsense knowledge triples is also provided.

also shows similar results for other CSKBs. However, reasoning solely on existing CSKBs

can be viewed as a simple triple classification task without considering complex graph

structure (as shown in Table 4.3, the graphs in CSKBs are much sparser). The population

task, which provides a richer graph structure, can explicitly leverage the large-scale corpus

to perform commonsense reasoning over multiple hops on the graph.

4.1.1 Limitations of CSKB Population

However, there are two major limitations for the evaluation of the CSKB population task.

First, automatic evaluation metrics, which are based on distinguishing ground truth anno-

tations from automatically sampled negative examples (either a random head or a random

tail), are not accurate enough. Instead of directly treating the random samples as nega-

tive, solid human annotations are needed to provide hard labels for commonsense triples.

Second, the human evaluation in the original paper of CSKB population [110] cannot be

generally used for benchmarking. They first populate the CSKB and then asked human

annotators to annotate a small subset to check whether the populated results are accurate or

not. A better benchmark should be based on random samples from all candidates, and the
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scale should be large enough to cover diverse events and states.

To effectively and accurately evaluate CSKB population, in this section, we bench-

mark CSKB population by firstly proposing a comprehensive dataset aligning four popular

CSKBs and a large-scale automatically extracted knowledge graph, and then providing a

large-scale human-annotated evaluation set. Four event-centered CSKBs that cover daily

events, namly ConceptNet [32] (the event-related relations are selected), ATOMIC [55],

ATOMIC20
20 [10], and GLUCOSE [1], are used to constitute the commonsense relations. We

align the CSKBs together into the same format and ground them to a large-scale eventual-

ity (including activity, state, and event) knowledge graph, ASER [58, 11]. Then, instead of

annotating every possible node pair in the graph, which takes an infeasible O(|V |2) amount

of annotation, we sample a large subset of candidate edges grounded in ASER to annotate.

In total, 31.7K high-quality triples are annotated as the development set and test set.

To evaluate the commonsense reasoning ability of machine learning models based on

our benchmark data, we first propose some models that learn to perform CSKB population

inductively over the knowledge graph. Then, we conduct extensive evaluations and analysis

of the results to demonstrate that the CSKB population is a hard task where models perform

poorly on our evaluation set far below human performance.

We summarize the contributions of the section as follows:

(1) We provide a novel benchmark for CSKB population over new assertions that cover four

human-annotated CSKBs, with a large-scale human-annotated evaluation set.

(2) We propose a novel inductive commonsense reasoning model that incorporates both

semantics and graph structure.

(3) We conduct extensive experiments and evaluations on how different models, common-

sense resources for training, and graph structures may influence the commonsense reason-

ing results.
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Glucose ATOMIC Relations

Dim 1, 6 xEffect, oEffect
Dim 2 xAttr (“feels”), xIntent (otherwise)
Dim 3, 4, 8, 9 Causes
Dim 5, 10 xWant, oWant
Dim 7 xReact, oReact

Table 4.1: The conversion from GLUCOSE relations to ATOMIC20
20 relations, inherited

from [1].

ATOMIC
(No clause)

ATOMIC20
20

(4 relations)
ConceptNet

(Event-centered)
GLUCOSE # Eventuality

# Triples 449,056 124,935 10,159 117,828 -

Knowlywood 2.63% 2.87% 16.50% 2.96% 929,546
ASER 61.95% 38.50% 44.94% 84.57% 52,940,258

Table 4.2: Overlaps between eventuality graphs and commonsense knowledge graphs. We
report the proportion of (h, r, t) triples where both the head and tail can be found in the
eventuality graph.

4.1.2 Task Definition

Denote the source CSKB about events as C = {(h, r, t)|h ∈ H, r ∈ R, t ∈ T }, where

H, R, and T are the set of the commonsense heads, relations, and tails. Suppose we

have another much larger eventuality (including activity, state, and event) knowledge graph

extracted from texts, denoted as G = (V , E), where V is the set of all vertices and E is the

set of edges. Gc is the graph acquired by aligning C and G into the same format. The goal

of CSKB population is to learn a scoring function given a candidate triple (h, r, t), where

plausible commonsense triples should be scored higher. The training of CSKB population

can inherit the setting of triple classification, where ground truth examples are from the

CSKB C and negative triples are randomly sampled. In the evaluation phase, the model

is required to score the triples from G that are not included in C and be compared with

human-annotated labels.
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4.2 Dataset Preparation

4.2.1 Selection of CSKBs

As we aim to explore commonsense relations among general events, we summarize several

criteria for selecting CSKBs. First, the CSKB should be well symbolically structured to

be generalizable. While the nodes in CSKB can inevitably be free-text to represent more

diverse semantics, we select the knowledge resources where format normalization is con-

ducted. Second, the commonsense relations are encoded as (head, relation, tail) triples. To

this end, among all CSKB resources, we choose the event-related relations in ConceptNet,

ATOMIC, ATOMIC20
20, and GLUCOSE as the final commonsense resources. For the event-

related relations in ConceptNet, the elements are mostly lemmatized predicate-object pairs.

In ATOMIC and ATOMIC20
20, the subjects of eventualities are normalized to placeholders

“PersonX” and “PersonY”. The nodes in GLUCOSE are also normalized and syntactically

parsed manually, where human-related pronouns are written as “SomeoneA” or “Some-

oneB”, and object-related pronouns are written as “SomethingA”. Other commonsense re-

sources like SocialChemistry101 [68] are not selected as they include loosely-structured

events.

For ConceptNet, we select the event-related relations Causes and HasSubEvent,

and the triples where nodes are noun phrases are filtered out. For ATOMIC, we restrict

the events to simple and explicit events that do not contain wildcards and clauses. As

ATOMIC20
20 itself includes the triples in ATOMIC and ConceptNet, to distinguish different

relations, we refer to ATOMIC20
20 as the new event-related relations annotated in ATOMIC20

20

[10], which are xReason, HinderedBy, isBefore, and isAfter. In the rest of

the section, ATOMIC(2020) means the combination of ATOMIC and the new relations in

ATOMIC20
20.

4.2.2 Alignment of CSKBs

To effectively align the four CSKBs, we propose best-effort rules for aligning the formats

for nodes and edges. First, for the nodes in each CSKB, we normalize the person-centric
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subjects and objects as “PersonX”, “PersonY”, and “PersonZ”, etc, according to the or-

der of their occurrence, and the object-centric subjects and objects as “SomethingA” and

“SomethingB”. Second, to reduce the semantic overlaps of different relations, we aggregate

all commonsense relations to the relations defined in ATOMIC(2020), as it is comprehensive

enough to cover the relations in other resources like GLUCOSE, with some simple align-

ment in Table 4.1.

ConceptNet. We select Causes and HasSubEvent from ConceptNet to constitute the

event-related relations. As heads and tails in ConceptNet don’t contain subjects, we add a

“PersonX” in front of the original heads and tails to make them complete eventualities.

ATOMIC(2020). In ATOMIC and ATOMIC20
20, heads are structured events with “PersonX”

as subjects, while tails are human-written free-text where subjects tend to be missing. We

add “PersonX” for the tails without subjects under agent-driven relations, the relations that

aim to investigate causes or effects on “PersonX” himself, and add “PersonY” for the tails

missing subjects under theme-driven relations, the relations that investigate commonsense

causes or effects on other people like “PersonY” .

GLUCOSE. For GLUCOSE, we leverage the parsed and structured version in this study.

We replace the personal pronouns “SomeoneA” and “SomeoneB” with “PersonX” and “Per-

sonY” respectively. For other object-centric placeholders like “Something”, we keep them

unchanged. The relations in GLUCOSE are then converted to ATOMIC relations according

to the conversion rule in the original paper [1]. Moreover, gWant, gReact, and gEffect

are the new relations for the triples in GLUCOSE where the subjects are object-centric. The

prefix “g” stands for general, to be distinguished from “x” (for PersonX) and “o” (for Per-

sonY).

4.2.3 Selection of the Eventuality KG

Taking scale and the diversity of relationships in the KG into account, we select two au-

tomatically extracted eventuality knowledge graphs as candidates for the population task,

Knowlywood [158] and ASER [58]. They both have complex graph structures that are

suitable for multiple-hop reasoning. We first check how much commonsense knowledge is
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included in those eventuality graphs to see if it’s possible to ground a large proportion of

commonsense knowledge triples on the graphs. Best-effort alignment rules are designed

to align the formats of CSKBs and eventuality KGs. For Knowlywood, as the patterns are

mostly simple verb-object pairs, we leverage the v-o pairs directly and add a subject in front

of the pairs. For ASER, we aggregate the raw personal pronouns like he and she to nor-

malized “PersonX”. As ASER adopts more complicated patterns of defining eventualities,

a more detailed pre-process of the alignment between ASER and CSKBs will be illustrated

in Section 4.2.4. We report the proportion of triples in every CSKB whose head and tail can

both be matched to the eventuality graph in Table 4.2. ASER covers a significantly larger

proportion of head-tail pairs in the four CSKBs than Knowlywood. The reason behind this

is that, on the one hand, ASER is of much larger scale, and on the other hand, ASER con-

tains eventualities with more complicated structures like s-v-o-p-o (s for subject, v for verb,

o for object, and p for preposition), compared with the fact that Knowlywood mostly covers

s-v or s-v-o only. In the end, we select ASER as the eventuality graph for population.

4.2.4 Pre-process of the Eventuality Graph

We introduce the normalization process of ASER, which converts its knowledge among

everyday eventualities into normalized form to be aligned with the CSKBs as discussed in

Section 4.2.2. Each eventuality in ASER has a subject. We consider singular personal pro-

nouns, i.e., “I”, “you”, “he”, “she”, “someone”, “guy”, “man”, “woman”, “somebody”, and

replace the concrete personal pronouns in ASER with normalized formats such as “Per-

sonX” and “PersonY”. Specifically, for an original ASER edge where both the head and

tail share the same person-centric subject, we replace the subject with “PersonX” and the

subsequent personal pronouns in the two eventualities with “PersonY” and “PersonZ” ac-

cording to the order of the occurrence if exists. For the two neighboring eventualities where

the subjects are different person-centric pronouns, we replace one with “PersonX” and the

other with “PersonY”. In addition, to preserve the complex graph structure in ASER, for all

the converted edges, we duplicate them by replacing the “PersonX” in it with “PersonY”,

and “PersonY” with “PersonX”, to preserve the sub-structure in ASER as much as possible.
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He accepts my offer

I praise his work

he is happy

Conjunction

X accepts Y’s offer

Y praise X’s work

X be happy

Y accepts X’s offer

X praise Y’s work

Y be happy

Work is done well

Work is done well

Result

Precedence

Precedence

Reason

Result

Conjunction

Conjunction

Result

Precedence

Precedence

Reason

Reason

Figure 4.2: An example of normalizing ASER. The coral nodes and edges are raw data
from ASER, and the blue ones are the normalized graph by converting “he” and “she” to
placeholders “PersonX” and “PersonY”

An illustration of the converting process is shown in Figure 4.2. The normalized version of

ASER is denoted as ASERnorm.

4.2.5 The Aligned Graph Gc

With the pre-process in Section 4.2.2 and 4.2.4, we can successfully align the CSKBs and

ASER together in the same format. To demonstrate ASER’s coverage on the knowledge

in CSKBs, we present the proportion of heads, tails, and edges that can be found in the

ASERnorm via exact string match in Table 4.3. For edges, we report the proportion of edges

where the corresponding heads and tails can be connected by a path in ASER. We also

report the average shortest path length in ASER for those matched edges from the CSKB

in the #hops column, showing that ASER can entail such commonsense knowledge within

several hops of path reasoning, which builds the foundation of commonsense reasoning on
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ASER. In addition, the average degree in Gc and C for heads and tails from each CSKB

is also presented in the table. The total number of triples for each relation in the CSKBs

is presented in Table 4.4. There are 18 commonsense relations in total for CSKBs and 15

relations in ASER. More detailed descriptions and examples of the unification are presented

in the Appendix (Table A.1, A.2).

4.2.6 Evaluation Set Preparation

For the ground truth commonsense triples from the CSKBs, we split them into train, devel-

opment, and test set with the proportion 8:1:1. Negative examples are sampled by selecting

a random head and a random tail from the aligned Gc such that the ratio of negative and

ground truth triples is 1:1. To form a diverse evaluation set, we sample 20K triples from

the original automatically constructed test set (denoted as “Original Test Set”), 20K from

the edges in ASER where heads come from CSKBs and tails are from ASER (denoted as

“CSKB head + ASER tail”), and 20K triples in ASER where both heads and tails come from

ASER (denoted as “ASER edges”). The distribution of different relations in this evaluation

set is the same as in the original test set. The sampled evaluation set is then annotated to

acquire ground labels.

4.3 Human Annotation

4.3.1 Setups

The human annotation is carried out on Amazon Mechanical Turk. Workers are provided

with sentences in the form of natural language translated from knowledge triples (e.g., for

xReact, an (h, r, t) triple is translated to “If h, then, PersonX feels t”). Additionally,

following ATOMIC20
20 [10], annotators are asked to rate each triple in a four-point Likert

scale: Always/Often, Sometimes/Likely, Farfetched/Never, and Invalid. Triples receiving

the former two labels will be treated as Plausible or otherwise Implausible. Each HIT

(task) includes 10 triples with the same relation type, and each sentence is labeled by 5

workers. We take the majority vote among five votes as the final result for each triple. To
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Relation ATOMIC(2020) ConceptNet GLUCOSE

oEffect 21,497 0 7,595
xEffect 61,021 0 30,596
gEffect 0 0 8,577
oWant 35,477 0 1,766
xWant 83,776 0 11,439
gWant 0 0 5,138
oReact 21,110 0 3,077
xReact 50,535 0 13,203
gReact 0 0 2,683
xAttr 89,337 0 7,664
xNeed 61,487 0 0
xIntent 29,034 0 8,292
isBefore 18,798 0 0
isAfter 18,600 0 0
HinderedBy 87,580 0 0
xReason 189 0 0
Causes 0 42 26,746
HasSubEvent 0 9,934 0

Total 578,252 10,165 126,776

Table 4.4: Relation distribution statistics for different CSKBs. Due to the filter in Sec-
tion 4.2.1, the statistics are different from the original papers.

avoid ambiguity and control the quality, we finalize the dataset by selecting triples where

workers reach an agreement on at least 4 votes.

4.3.2 Quality Control

For strict quality control, we carry out two rounds of qualification tests to select workers

and provide a special training round. First, workers satisfying the following requirements

are invited to participate in our qualification tests: 1) at least 1K HITs approved, and 2) at

least 95% approval rate. Second, a qualification question set including both straightforward

and tricky questions is created by experts, who are graduate students in HKUST and have a

clear understanding of this task. 760 triples sampled from the original dataset are annotated

by the experts. Each worker needs to answer a HIT containing 10 questions from the

qualification set and their answers are compared with the expert annotation. Annotators who

correctly answer at least 8 out of 10 questions are selected in the second round. 671 workers

participated in the qualification test, among which 141 (21.01%) workers are selected as our

main round annotators. To further enhance the quality, we carry out an extra training round

49



Dev Test Train

# Triples 6,217 25,514 1,100,362
% Plausible 51.05% 51.74% -
% Novel Nodes 67.40% 70.01% -

Table 4.5: Statistics of the annotated evaluation set. # triples indicates the number of triples
in the dataset, % Plausible indicates the proportion of plausible triples after majority voting,
and % Novel Nodes is the proportion of nodes that do not appear in the training CSKBs. We
also report the scale of the unannotated training set (including random negative examples)
for reference.

for the main round annotators. For each relation, annotators are asked to rate 10 tricky

triples carefully selected by experts. A grading report with detailed explanations on every

triple is sent to all workers afterward to help them fully understand the annotation task.

After filtering, we acquire human-annotated labels for 31,731 triples. The IAA score is

71.51% calculated using pairwise agreement proportion, and the Fleiss’s κ [159] is 0.43.

We further split the proportion of the development set and test set as 2:8. The overall

statistics of this evaluation set are presented in Table 4.5. To acquire human performance,

we sample 5% of the triples from the test set, and ask experts as introduced above to provide

two additional votes for the triples. The agreement between labels acquired by majority

voting and the 5+2 annotation labels is used as the final human performance of this task.

4.4 Experiments

In this section, we introduce the baselines and our proposed model KG-BERTSAGE for the

CSKB population task, as well as the experimental setups.

4.4.1 Model

The objective of a population model is to determine the plausibility of an (h, r, t) triple,

where nodes can frequently be out of the domain of the training set. In this sense, trans-

ductive methods based on knowledge base embeddings [2] are not studied here. We present

several ways of encoding triples in an inductive manner.

BERT. The embeddings of h, r, t are encoded as the embeddings of the [CLS] tokens

50



after feeding them separately as sentences to BERT. For example, the relation xReact

is encoded as the BERT embedding of “[CLS] xReact [SEP]”. The embeddings are then

concatenated as the final representation of the triple, [sh, sr, st].

BERTSAGE. The idea of BERTSAGE [110] is to leverage the neighbor information of

nodes through a graph neural network layer for their final embedding. For h, denote its

BERT embedding as sh, then the final embedding of h is eh = [sh,
∑

v∈N (h) sv/|N (h)|],

where N (h) is the neighbor function that returns the neighbors of h from G. The final

representation of the triple is then [eh, sr, et].

KG-BERT. KG-BERT(a) [111] encodes a triple by concatenating the elements in (h, r, t)

into a single sentence and encode it with BERT. Specifically, the input is the string concate-

nation of [CLS], h, [SEP], r, [SEP], t, and [SEP].

KG-BERTSAGE. As KG-BERT doesn’t take into account graph structures directly, we pro-

pose to add an additional graph SAmpling and AGgregation layer [116] to better learn the

graph structures. Specifically, denoting the embedding of the (h, r, t) triple by KG-BERT as

KG-BERT(h, r, t), the model of KG-BERTSAGE is the concatenation of KG-BERT(h, r, t),∑
(r′,v)∈N (h) KG-BERT (h, r′, v)/|N (h)|, and

∑
(r′,v)∈N (t) KG-BERT (v, r′, t)/|N (t)|. Here,

N (h) returns the neighboring edges of node h.
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Relation #Eval. #Train

xWant 2,605 152,634
oWant 999 59,688
gWant 207 8,093
xEffect 2,757 144,799
oEffect 667 46,555
gEffect 287 13,529
xReact 2,999 100,853
oReact 921 38,581
gReact 164 4,169
xAttr 2,561 152,949
xIntent 1,017 59,138
xNeed 1,532 98,830
Causes 1,422 40,450
xReason 16 320
isBefore 879 27,784
isAfter 1,152 27,414
HinderedBy 4,870 127,320
HasSubEvent 459 16,410

Table 4.7: Number of triples of each relation in the Eval. (dev+test) and Train set.

4.4.2 Setup

We train the population model using a triple classification task, where ground truth triples

come from the original CSKB, and the negative examples are randomly sampled from the

aligned graph Gc . The model needs to discriminate whether an (h, r, t) triple in the human-

annotated evaluation set is plausible or not. For evaluation, we use the AUC score as the

evaluation metric, as this commonsense reasoning task is essentially a ranking task that is

expected to rank plausible assertions higher than those farfetched assertions.

We use BERTbase from the Transformer1 library, and use learning rate 5×10−5 and batch

size 32 for all models. The statistics of each relation are shown in Table 4.7. We select the

best models individually for each relation based on the corresponding development set.

Besides AUC scores for each relation, we also report the AUC score for all relations by the

weighted sum of the break-down scores, weighted by the proportion of test examples of

the relation. This is reasonable as AUC essentially represents the probability that a positive

example will be ranked higher than a negative example.

1https://transformer.huggingface.co/
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4.4.3 Main Results

The main experimental results are shown in Table 4.6. KG-BERTSAGE performs the best

among all, as it both encodes an (h, r, t) as a whole and takes full advantage of neigh-

boring information in the graph. Moreover, all models are significantly lower than human

performance with a relatively large margin.

ASER can on the one hand provide candidate triples for populating CSKBs, and can

on the other hand provide graph structure for learning commonsense reasoning. From the

average degree in Table 4.3, the graph acquired by grounding CSKBs to ASER can provide

far more neighbor information than using the CSKBs only. While KG-BERT treats the task

directly as a simple triple classification task and takes only the triples as input, it does not

explicitly take into consideration the graph structure. KG-BERTSAGE on the other hand

leverages an additional GraphSAGE layer to aggregate the graph information from ASER,

thus achieving better performance. It demonstrates that it is beneficial to incorporate those

un-annotated ASER graph structures where multiple-hop paths are grounded between com-

monsense heads and tails. Though BERTSAGE also incorporates neighboring information,

it only leverages the ASER nodes representation and ignores the complete relational infor-

mation of triples as KG-BERTSAGE does. As a result, it doesn’t outperform BERT by much

for the task.
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Model
Original
Test Set

CSKB head
+ ASER tail

ASER
edges

BERT 65.0 47.9 44.6
BERTSAGE 67.2 49.4 46.2
KG-BERT 77.8 55.2 50.3
KG-BERTSAGE 78.2 57.5 52.3

Table 4.9: AUC scores grouped by the types of the evaluation sets defined in 4.2.6. The
latter two groups are harder for neural models to distinguish.

4.4.4 Zero-shot Setting

We also investigate the effects of different training CSKBs as shown in Table 4.8. Models

are then trained on the graphs only consisting of commonsense knowledge from ATOMIC(2020),

GLUCOSE, and ConceptNet, respectively. The models trained on all CSKBs achieve bet-

ter performance both for each individual relation and on the whole. We can conclude that

more high-quality commonsense triples for training from diverse dimensions can benefit

the performance of such commonsense reasoning.

When trained on each CSKB dataset, there are some relations that are never seen in the

training set. As all of the models use BERT to encode relations, the models are inductive

and can thus reason triples for unseen relations in a zero-shot setting. For example, the

isBefore and isAfter relations are not presented in GLUCOSE, while after training

KG-BERTSAGE on GLUCOSE, it can still achieve fair AUC scores. Though not trained

explicitly on the isBefore and isAfter relations, the model can transfer the knowledge

from other relations and apply them to the unseen ones.

4.5 Error Analysis

As defined in Section 4.2.6, the evaluation set is composed of three parts: edges coming

from the original test set (Original Test Set), edges where heads come from CSKBs and

tails from ASER (CSKB head + ASER tail), and edges from the whole ASER graph (ASER

edges). The break-down AUC scores of different groups given all models are shown in

Table 4.9. The performances under the Original Test Set of all models are remarkably

better than the other two groups, as the edges in the original test set are from the same
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Head Relation Tail Label Pred.

PersonX go to nurse xEffect PersonX use to get headache 0 1
PersonX have a quiz Causes PersonX have pen 0 1
PersonX be strong oWant PersonY like PersonX 0 1
PersonX feel a pain xIntent PersonX finger have be chop off 0 1

Table 4.10: Examples of error predictions made by KG-BERTSAGE, where the head and
tail are semantically related while not conformed to the designated commonsense relation.

domain as the training examples. The other two groups, where there are more unseen nodes

and edges, are harder for the neural models to distinguish. The results show that simple

commonsense reasoning models struggle to be generalized to unseen nodes and edges. As

a result, in order to improve the performance of this CSKB population task, more attention

should be paid to the generalization ability of commonsense reasoning on unseen nodes and

edges.

Moreover, by taking a brief inspection of the test set, we found that errors occur when

encountering triples that are not logically sound but semantically related. Some examples

are presented in Table 4.10. For the triple (PersonX go to nurse, xEffect, PersonX use

to get headache), the head event and tail event are highly related. However, the fact that

someone gets a headache should be the reason instead of the result of going to the nurse.

More similar errors are presented in the rest of the table. These failures may be because

when using BERT-based models, the training may not be well performed for the logical

relations or discourse but still recognize the semantic relatedness patterns.

4.6 CKBP v2

However, there is concern regarding the quality of the above crowdsourced CKBP dataset,

denoted as CKBP v1. CKBP v1 instances are randomly sampled from the whole population

space, resulting in a low recall of plausible commonsense knowledge due to the noise in

candidate discourse knowledge. Moreover, as pointed out by [160], current crowdsourced

commonsense benchmarks often contain a substantial fraction of incorrect answers; we also

find it true for CKBP v1 after manual inspection. For example, annotators frequently make

mistakes on some subtle relations such as xIntent, which should describe an intention
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instead of a consequence.

Therefore, to address the quality issue, we present a more high-quality and adversar-

ially constructed evaluation set by expert annotation. Leveraging the existing framework,

we build CKBP v2 by randomly sampling 2.5k instances from CKBP v1 and adding 2.5k

adversarial instances, leading to a total of 5k instances as an evaluation set. These in-

stances are then annotated by experts with substantial expertise in machine commonsense.

Then, we present both intrinsic and extrinsic experiments based on CKBP v2. We study the

performance of both supervised and semi-supervised task-specific models, together with

powerful off-the-shelf language models, such as ChatGPT [41] and Vera [161], and show

that the CKBP v2 evaluation set is still challenging even for advanced language models.

Moreover, by employing a CSKB Population model that demonstrates satisfactory perfor-

mance on CKBP v2, we can enrich existing CSKBs with diverse and novel knowledge that

significantly benefits downstream reasoning. We present methodologies and experiments

on generative commonsense inference [56] and zero-shot commonsense question answer-

ing [162], and show that the acquired commonsense knowledge can be valuable augmented

data on the original CSKB and lead to improved downstream performance. In particu-

lar, CKBP v2-preferred population model exhibits better alignment than CKBP v1 with

advancements in generative commonsense inference.

4.6.1 Dataset Preparation

We randomly sampled 2.5k instances from CKBP v1 and 2.5k adversarial instances to form

CKBP v2. Instances from CKBP v1 are sampled so that the ratio of the number of triples

between relations remains unchanged. Meanwhile, the adversarial instances are ones from

the candidate knowledge base ASER that the finetuned baseline KG-BERT [117] model

confidently believes they are plausible, i.e., receives plausibility score ≥ 0.9. To ensure the

diversity of adversarial instances and hence the evaluation set, we adopt an additional diver-

sity filter using self-BLEU following [102]. The triples annotated as negative are considered

hard negatives as they are what a standard CSKB Population model would favor. Note that

we only consider instances of 15 relations other than general Want/React/Effect,
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# Triples % Plau. % Unseen

split
Dev 958 20.46 56.79
Test 4,048 22.06 60.43

instance type
In-Domain 845 34.56 43.79
Out-of-Domain 1,653 11.92 63.37
Adv. 2,508 23.92 61.12

relation
xWant 611 22.75 54.01
oWant 239 25.94 58.18
xEffect 603 29.68 55.23
oEffect 172 21.51 58.91
xReact 533 20.64 51.18
oReact 183 13.66 50.70
xAttr 605 23.47 52.91
xIntent 239 16.32 58.40
xNeed 378 25.66 55.37
Causes 236 21.61 55.41
xReason 5 40.0 30.0
isBefore 157 28.03 54.80
isAfter 182 24.73 55.40
HinderedBy 777 12.1 63.17
HasSubEvent 86 26.74 61.04

Table 4.11: Statistics of CKBP v2. # Triples, % Plausible, and % Unseen, respectively,
indicate the number of triples in the subset, the proportion of plausible triples after label
finalization, and the proportion of nodes that do not appear in the training set.

because most of the triples on the three relations are broken sentences in CKBP v1. We also

removed samples of these relations from the training set.

4.6.2 Annotation Process

Setup We recruited four human experts for the annotation work. The experts are gradu-

ate NLP researchers with at least one year of experience working on CSKBs. We randomly

divide 5k samples into 4 parts, then for i from 0 to 3, assign the ith and (i + 1 mod 4)th

parts to the ith expert. In this way, two different annotators annotate each triple, and we can

fully compare the pairwise agreement between all four annotators. Experts are provided

with knowledge triples in the format of (h, r, t), referencing the definition and examples of
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all relations in ATOMIC20
20 [10]. We ask annotators to judge the plausibility of triples in

a three-point Likert scale with corresponding scores: Always/Often (1), Sometimes (0.5),

Rarely/Never/Ambiguous/Invalid (0). The final label of an instance is determined as plau-

sible if and only if it receives at least one score of 1 and the other score is at least 0.5. For

remaining cases, the final label is implausible. After finalizing the annotation, we split the

evaluation set into development and test sets with a ratio of 1:4 with the preservation of

distribution w.r.t labels, relations, and instance types. To estimate human performance, we

treat expert annotations as two sets of predictions and compare them to the final labels.

Similar to CKBP v1, we categorize the evaluation set into three groups based on their

origin, which are 1) ID: in-domain, whose head and tail events are all from CSKBs, 2)

OOD: out-of-domain, which has at least one event outside of CSKBs (equivalent to “CSKB

head + ASER tail” and “ASER Edges” in CKBP v1), and 3) Adv.: adversarial examples

newly introduced in CKBP v2.

Quality Control Although annotators are experts with a clear understanding of the CSKB

Population, we acknowledge the ambiguity of CSKB relations and the difficulty in discrim-

inating between them. To control the quality, we provide guidance as a list of scoring

criteria. We also carried out a dry run, which asked them to annotate 60 instances covering

all relations in order to establish a unified understanding of the problem among participants.

After that, we carry out the main round, where the annotators perform their jobs indi-

vidually and independently. Throughout the process, we regularly conduct random checks

on the samples and engage in discussions with annotators to address any disagreements.

We then use the insights gained from these discussions to update and refine our guidance

iteratively. After the individual annotation, we facilitated a conflict resolution session to

address instances with contrasting scores of 1 and 0. After resolving conflicts, we have the

average inter-annotator agreement score IAA as 90.55%.
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Category Model
AUC F1

all ID OOD Adv. all ID OOD Adv.

Zero-shot

GPT2-large 56.47 56.60 58.31 54.22 35.37 47.40 24.06 36.84
GPT2-XL 56.79 54.47 56.70 54.63 35.22 47.62 23.49 36.65
GPT3 text-davinci-003 61.63 65.93 59.17 59.98 39.44 51.09 28.57 38.20
ChatGPT gpt-3.5-turbo 65.77 70.37 62.56 62.27 45.93 62.59 44.79 26.86

Supervised
Learning

KG-BERT (BERT-base) 71.33 84.60 64.47 62.9 45.03 69.27 26.53 41.97
KG-BERT (RoBERTa-L) 73.70 85.53 67.70 65.60 46.70 69.73 30.73 43.27
COMET (GPT2-L) 70.00 79.02 66.43 62.62 45.55 61.90 32.14 42.15
COMET (GPT2-XL) 70.32 79.66 66.53 63.22 45.32 63.34 31.18 40.83
Vera (T5-xxlarge) 72.45 78.84 68.40 68.16 52.13 71.73 36.74 50.02

Semi-
Supervised

PseudoReasoner BERT-base 71.93 84.23 66.67 63.43 45.47 68.67 30.17 41.77
PseudoReasoner RoBERTa-L 74.33 85.57 69.33 66.37 46.63 69.70 30.87 43.13

Human 94.1 94.9 91.4 94.5 91.5 94.3 86.9 91.5

Table 4.12: Main experimental results on CKBP v2. Both AUC and F1 are used as eval-
uation metrics. The “all” column indicates the overall performance, and ID, OOD, Adv.
indicate the performance of the In-domain, Out-of-domain, and Adversarial subset. The
best results are boldfaced, and the second-best ones are underlined.

4.6.3 Data Analysis

The overall statistics of CKBP v2 are shown in Table 4.11. It can be easily observed that the

new evaluation set has data imbalance issues. However, we do not down-sample the evalu-

ation set to achieve the data balance since the imbalance better reflects the true distribution

of plausible and implausible commonsense knowledge in ASER. Given this imbalance, we

notice that the AUC scores of examined population models will naturally be high. Also,

in the real application of population models, we focus on the precision and recall of the

detection for plausible commonsense instances. Thus, in Section 4.6.4, along with AUC,

we also report the binary F1 scores for each experimented model.

4.6.4 Experiments

Setup We examine several models which were previously evaluated on CKBP v1, in-

cluding zero-shot GPT models [37], supervised-learning baselines KG-BERT [117] and

COMET [56], and semi-supervised-learning models PseudoReasoner [118] with two back-
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bone encoders, BERT-base-uncased [35] and RoBERTa-large [163]. We use Huggingface2

Transformers [164] to build our code base. For discriminative models, we set the learn-

ing rate as 1e-5, batch size 64/32 for base/large variants, respectively, and the number of

training epochs as 1. For generative models (COMET), we use learning rate 1e-5 and batch

size 32 to train in 3 epochs. Negative perplexity scores are used as the final prediction

scores. For PseudoReasoner, we adopt the best settings in [118], where we first finetune the

KG-BERT model on pseudo-labeling data for one epoch, then from the best checkpoint, we

resume the finetuning process on the original training data. Note that the training data and

unlabeled data are taken from PseudoReasoner [118]. We run each baseline three times with

different random seeds, then average the result and report in Table 4.12. For GPT3 [100]

and ChatGPT experiments, we use simple prompts asking them to decide whether an asser-

tion is plausible or not.

Result and Analysis The results are shown in Table 4.12. We provide the AUC score and

F1 score of all the baselines on the test set in terms of overall performance (all), performance

on the subset of ID, OOD, and Adv. samples. When calculating F1, for discriminative

models, we set the decision threshold as 0.5 (as default), while for generative models, as

perplexity serves as the final prediction score, we tune the threshold to obtain the highest

F1 score on the development set for each run.

In the zero-shot setting, the scores increase by the version of GPT. GPT3 3 gives a

significant improvement over GPT2 models, and ChatGPT surpasses its sibling GPT3 with

a similar margin of improvement. Nonetheless, despite the performance improvement from

ChatGPT, there is still a clear gap between the zero-shot and (semi-)supervised settings.

In terms of supervised and semi-supervised learning, we observe different scenarios

between KG-BERT’s performance and COMET’s performance, comparing to the result on

CKBP v1 reported in PseudoReasoner [118]. Here, on CKBP v2, KG-BERT outperforms

COMET with a significant gap of 3 AUC overall and also outperforms in all subsets of the

test set. This shows the importance of including negative (implausible) examples in the

2https://huggingface.co/
3text-davinci-003

62



training for discriminating commonsense. This also explains why there is no significant

improvement of PseudoReasoner over the baseline KG-BERT on this new evaluation set.

4.7 Conclusion

In this section, we benchmark the CSKB population task by proposing a dataset by aligning

four popular CSKBs and an eventuality graph ASER, and provide a high-quality human-

annotated evaluation set to test models’ reasoning ability. We also propose KG-BERTSAGE

to both incorporate the semantic of knowledge triples and the subgraph structure to conduct

reasoning, which achieves the best performance among other counterparts. Experimental

results also show that the task of reasoning unseen triples outside of the domain of CSKB

is a hard task where current models are far away from human performance, which brings

challenges to the community for future research.
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CHAPTER 5

SEMI-SUPERVISED LEARNING FOR

IMPROVED COMMONSENSE KNOWLEDGE

BASES POPULATION

5.1 Preliminary

Commonsense knowledge are the common agreements by most people on daily entities,

which are crucial for intelligent systems to act sensibly in the real world [14, 12]. Endowing

natural language understanding systems with the ability to draw commonsense reasoning

remains an important yet challenging task.

Throughout the development of automated commonsense understanding, Common-

Sense Knowledge Base (CSKB) has been an important form of automatic commonsense

reasoning system that stores knowledge sources for drawing inferences. With expert-curated

relations and human annotations, CSKBs such as ConceptNet [12], ATOMIC [55, 10],

and GLUCOSE [1] are developed to study commonsense regarding properties of objects,

causes and effects of events and activities, motivations and emotional trajectories of hu-

mans on certain circumstances, and so on. As those human-annotated CSKBs are sparse

and usually of a small scale and coverage, reasoning tasks on CSKB such as CSKB Com-

pletion [165, 166, 167] and CSKB Population [110, 168] are defined with the goal of either

adding new edges/assertions within the training knowledge base (CSKB Completion), or

adding new edges/assertions from outside of CSKBs (CSKB Population). A visualized

comparison between the two tasks is shown in Figure 5.1.

Different from CSKB Completion, which adopts a close-world assumption and as-

sumes all knowledge is in-domain, the population task deals with unseen entities and re-

quires a more out-of-distribution reasoning ability. In this section, we study common-

sense reasoning in the context of CSKB Population. In this task, four mainstream CSKBs,
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Y is grateful
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have the skillHinderedBy

(ATOMIC2020)

Causes
(GLUCOSE/ConceptNet)

xWant
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oEffect
(ATOMIC)
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Completion
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Condition
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Result oReact??
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Figure 5.1: An example of CSKB Population. The coral part (left) and the blue part (right)
respectively represent the labeled CSKBs and the unlabeled candidate pool. The entities in
the overlap parts are marked with coral shape and blue outline. The reasoning within the
CSKB (coral-outlined boxes) belongs to the CSKB Completion part, and the reasoning that
are not limited within the domain of CSKBs belongs to CSKB Population.

ConceptNet, ATOMIC, ATOMIC20
20, and GLUCOSE are aligned together as the labeled

dataset. ASER [59], a large-scale eventuality (events, activities, and states) knowledge

graph is aligned with CSKBs and serves as unlabeled candidates for populating common-

sense knowledge. Human annotations on held-out dev/test sets sampled from both CSKBs

and ASER are provided as the evaluation set.

There are two major challenges remaining unsolved for CSKB Population. First, the

scale of the annotated training set (ConceptNet, ATOMIC, and GLUCOSE) is approxi-

mately 1M samples, too small compared with 200M of the actual candidate space to per-

form population (ASER). Second, as inherently only ground-truth (positive) examples are

provided by CSKBs, the randomly sampled negative examples in the task are less infor-

mative and may lead the model to overfit artifacts of the dataset. A supervised learning

model finetuned on such an annotated training set is hard to generalize to out-of-domain

knowledge space, as shown in the experiments in Section 4 and also Table 5.3, where the

AUC for out-of-domain test sets performs over 10 points worse than the in-domain part.
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To address the above challenges, we propose PseudoReasoner, a semi-supervised learn-

ing framework that uses a pre-trained commonsense teacher model to automatically label

the unlabeled candidates to serve as pseudo labels, such that the student model can be fur-

ther finetuned with pseudo labels to improve out-of-domain commonsense reasoning abil-

ity. In fact, pre-trained language models finetuned on commonsense knowledge bases have

been shown to perform generalizable commonsense reasoning on downstream tasks to some

extent. For example, leveraging commonsense knowledge generated by COMET [56], a

language model finetuned on ATOMIC, can improve the performance on commonsense

QA [6, 169, 170]. Different from the text generation paradigm as in previous works, here

we leverage the commonsense language model as a teacher model for labeling unlabeled

candidates. To further improve the quality of pseudo labels, we use both influence func-

tion [171] and the student model’s prediction to select highly confident pseudo examples.

Our contribution is three-fold:

1. We introduce a new way of providing pseudo labels for CSKB Population by lever-

aging generative commonsense language models.

2. We propose a semi-supervised learning framework with pseudo labels and a special

filtering mechanism based on influence function and student model’s prediction that

significantly improve the performance of CSKB Population, especially for out-of-

domain knowledge triples.

3. We demonstrate the effectiveness of our framework by extensive experiments on dif-

ferent backbone models and different semi-supervised learning methods. We achieve

the state-of-the-art performance on this task.

5.1.1 Problem Definition

Denote a labeled ground-truth Commonsense Knowledge Base as D+
l = {(h, r, t)|h ∈

HC , r ∈ R, t ∈ TC}. The overall labeled dataset Dl = {(h, r, t), y)} is composed of D+
l

and a randomly sampled negative dataset D−
l from the CSKB, where y ∈ {0, 1} is the label

of the triple. Triples from D+
l are labeled 1 while those from D−

l are labeled 0. HC and TC

are the set of heads and tails in the CSKB. R is the relation set.
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Original
Test Set

CSKB head
+ ASER tail

ASER
edges

Sampled from Dl Dl head, Du tail Du

Domain In-domain Out-of-domain Out-of-domain
# triples (dev) 2,042 2,193 1,982
# triples (test) 8,437 9,103 7,974

Table 5.1: The details of evaluation set categorization.

Dl Du

# triples 1,119,517 (training) 218,809,746

Table 5.2: Statistics of labeled Dl (CSKB with negative examples) and unlabeled Du

(processed ASER).

Du = {(h, r, t)|h ∈ Hu, r ∈ R, t ∈ Tu} is an unlabeled candidate knowledge base of

the same format and relation set as the CSKB. It is of a much larger scale than the labeled

part and is a source for populating commonsense knowledge. Hu and Tu are the set of

heads and tails in the unlabeled KB. The task is defined as given the labeled commonsense

knowledge base Dl as training source, predict the plausibility of triples from Du.

We use the dataset provided by DISCOS [115]. Here, the set of heads HC , tails TC ,

and relations R come from the alignment of ConceptNet, ATOMIC, ATOMIC20
20 (newly

developed relations), and GLUCOSE, as in the original paper. The unlabeled KB Du is

adapted from ASER, where the discourse relations are converted to commonsense relations

to serve as candidates for population. The evaluation dataset with 32K triples is sampled

from both Dl and Du and manually annotated. There are three categories of the evaluation

set, Original Test Set , CSKB head + ASER tail, and ASER edges, where the first category

is sampled from the held-out test split in Dl (both D+
l and negative examples D−

l ) and is

thus an in-domain test set, and the latter two are novel assertions outside of Dl and are thus

out-of-domain. The statistics and descriptions of the training and evaluation datasets are

shown in Table 5.2 and 5.1.
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✔️: Ground truth triples from CSKBs, e.g., ATOMIC.

❌: Randomly sampled negative triples from CSKB and ASER.
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Final
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Figure 5.2: An end-to-end workflow of PseudoReasoner. Four steps in the figure are
elaborated in Section 5.3.

5.2 CSKB Population

5.2.1 Backbone Models

Considering the nature of the CSKB Population task is triple classification in the form of

natural language, we use KG-BERT [4] as the backbone model. In detail, a triple (h, r, t)

is concatenated and serialized as “[CLS], h1, ..., h|h|, [SEP], [r], [SEP], t1, ..., t|t|”. Here,

[CLS] and [SEP] are the special tokens in BERT-based models [35]. [CLS] is used to rep-

resent the whole sentence, and [SEP] is used to separate different sentences respectively.

h1, ..., h|h| are the tokens of the head h, and t1, ..., t|t| are the tokenized tokens of the tail t.

[r] is registered as a new special token for a certain relation r. After feeding the serialized

version of (h, r, t) into a BERT-based masked language model, the representation of the

special token [CLS] is regarded as the representation of the whole triple. It is trained to

distinguish positive triples from negative triples with cross-entropy loss. Here x denotes a

triple (h, r, t), PL models the distribution of the labeled dataset Dl, and θ is the set of pa-

rameters for KG-BERT. Pθ(y|x) denotes the probability after feeding the model prediction

logits to softmax under parameter set θ. Then the optimization objective is as follows:

J(θ) = Exl∼PL(x)[− logPθ(y|xl)]. (5.1)
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5.3 Methods

In this section, we present the details of the framework of PseudoReasoner. A sketch illus-

tration of the model is presented in Figure 5.2. To sum up, the procedure of PseudoReasoner

can be summarized into the following steps:

1. Train a teacher model and a student model on the labeled dataset Dl (Section 5.3.1).

2. Use the teacher model to predict plausibility scores on triples from the unlabeled Du.

Triples with high/low plausibility scores within pre-defined intervals are given label

1/0 (Section 5.3.1).

3. Filter the pseudo labels with influence function with respect to the student model, and

the student model’s predictions. (Section 5.3.1).

4. Finetune the student model on filtered pseudo labels from 3). (Section 5.3.2).

5.3.1 Pseudo Label Construction

Teacher Models

We use a pre-trained teacher model on the labeled dataset to label the unlabeled triples. We

define plausibility scores of an unlabeled triple x as α(x), where the higher the score the

more plausible the triple is regarded by the teacher model. We choose two different forms

of teacher models as follows:

• GPT-2 [172]: As negative sampling in the labeled dataset Dl is noisy, we aim to use an

alternative model that avoids the negative part D−
l . We finetune a (COMET) GPT2 language

model, as the representative of generative family, on the positive part of the labeled dataset,

D+
l , with a text generation task. For an (h, r, t) triple from D+

l , denote x as the serialized

version of the triple, “h1, ..., h|h|, [r], t1, ..., t|t|”. θLM denotes the trainable parameters in

GPT2 language model (LM). We minimize the negative log likelihood of each triple as

indicated in Equation (5.2):

L(x, θLM) = − 1

|x|

|x|∑
i=1

logP (xi|x<i, θLM). (5.2)
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Category Model all
In-domain Out-of-domain (OOD)

∆all ∆OODOriginal
Test Set

CSKB head
+ ASER tail

ASER
edges

Supervised
Learning

KG-BERT (BERT-base) 110M 62.5 74.2 51.9 54.7 - -
KG-BERT (BERT-large) 340M 67.7 74.5 58.7 62.0 - -
KG-BERT (DeBERTa-base) 100M 64.5 73.2 54.0 57.0 - -
KG-BERT (DeBERTa-large) 350M 69.2 77.6 59.9 61.8 - -
KG-BERT (BART-base) 139M 65.1 74.7 54.7 56.6 - -
KG-BERT (BART-large) 406M 70.4 78.6 62.8 64.2 - -
KG-BERT (RoBERTa-base) 110M 68.0 76.3 59.3 59.8 - -
KG-BERT (RoBERTa-large) 340M 70.9 78.0 63.4 64.6 - -
COMET (GPT2-small) 117M 69.6 71.6 67.4 65.0 - -
COMET (GPT2-medium) 345M 69.7 71.9 67.0 67.9 - -
COMET (GPT2-large) 774M 70.6 73.7 66.8 68.0 - -
COMET (GPT2-XL) 1558M 70.7 74.6 66.7 67.6 - -

Semi-supervised
Learning
(RoBERTa-large)

UDA (TF-IDF) 71.7 78.0 65.1 65.9 +0.8 +1.5
UDA (back-trans.) 71.6 78.6 64.2 66.2 +0.7 +1.2
G-DAUG 71.7 78.5 64.8 65.5 +0.8 +1.2
G-DAUG (COMET-distill) 72.2 78.6 65.9 66.9 +1.3 +2.4
Noisy-student 72.4 79.3 65.3 66.7 +1.5 +2.0

Ours
PseudoReasoner (BERT-base) 67.9 76.0 56.1 64.2 +5.4 +6.9
PseudoReasoner (RoBERTa-large) 74.2 80.1 69.5 69.3 +3.3 +5.3

Table 5.3: Results on the test set of the CSKB Population benchmark. For supervised
learning baselines, we report the result of KG-BERT [4] with four backbone encoders and
GPT2 (use LM loss to score triples). For semi-supervised learning (SSL) baselines, we
study UDA [5], G-DAUG [6], and Noisy-student [7]. The backbone encoders for SSL
baselines are RoBERTa-large, which performs the best in the supervised setting. The num-
ber of parameters of backbone language models are presented as subscripts behind model
names. ∆all and ∆OOD are the improvement on the “all” AUC and the Out-of-domain
(OOD) AUC.

Denote the optimized parameters as θ∗LM . Here, the plausibility function α(x) = −L(x, θ∗LM),

where the lower the loss, the higher the plausibility score by GPT2. Hence, for the triples

from the unlabeled dataset, Du, we score every triple with Equation (5.2) on θ∗LM .

• KG-BERT: Besides GPT2, KG-BERT itself, a discriminative model, can be used as a

teacher model. This teacher model learns θ∗ from the labeled dataset Dl with cross entropy

loss in Equation (5.1). For an instance {(h, r, t), y} ∈ Dl, denote x = (h, r, t), we use α(x)

= Pθ∗(y=1|x) as x’s plausibility score.

Acquiring Pseudo Labels

The triples whose plausibility scores α(x) are between [T −
min, T −

max] are labeled as negative,

and the triples within [T +
min, T +

max] are labeled as positive. Here T −
min < T −

max < T +
min <

T +
max. The reason that we introduce additional T −

min and T +
max is that we want to filter out the
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triples that are treated over plausible or implausible by GPT2 to reduce potential selection

bias. For example, GPT2 has been shown to provide low loss for repetitive patterns instead

of the plausibility of the semantics [100].

Pseudo Label Filters

To further improve the quality of pseudo labels, we propose two filtering mechanisms on

pseudo labels for better finetuning.

• Influence Function. Filtering out detrimental training examples with influence func-

tion [171] can boost the model performance, as shown in [6] and [173]. A training example

z = ((h, r, t), y) will hurt the generalization ability of the model if including z in the train-

ing set results in a higher validation loss. Denote L(Z, θ) as the loss function of dataset

Z under the parameter set θ. Then the loss under training set Ztrain is indicated in Equa-

tion (5.3):

L(Ztrain, θ) =
1

|Ztrain|

|Ztrain|∑
i=1

L(zi, θ). (5.3)

Denote θ∗ as the optimized parameters after training the model on Ztrain, and θ∗−z as the

optimized parameters after training the model on Ztrain − {z}. Denote Zval as the val-

idation set. The empirical criterion to determine z as a detrimental training example is

Equation (5.4):

L(Zval, θ
∗)− L(Zval, θ

∗
−z) > 0. (5.4)

The left-hand-side L(Zval, θ
∗) − L(Zval, θ

∗
−z) can be approximated without retraining the

model by influence function [171]:

Iup,loss(z) = −∇θL(zval, θ
∗)⊤H−1

θ∗ ∇θL(z, θ
∗), (5.5)

where Hθ∗ = 1
|Ztrain|

∑
zi∈Ztrain

∇2
θ∗L(zi, θ

∗) is the Hessian. We linearly approximate

Iup,loss with inverse hessian-vector product (HVP) introduced in LiSSA [174] following [171].

We filter out those examples with negative influence scores, which are harmful to the gen-

eralization of the model.

• KG-BERT. As the student model we use is KG-BERT, when the pseudo labels from
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GPT2 are used, we can use the Pθ∗(y|x) produced from optimized KG-BERT as an ad-

ditional filter to select pseudo labels. Specifically, pseudo labels {x = (h, r, t), y} with

Pθ∗(y|x) > 0.5 are selected. This procedure can be viewed as ensembling GPT2 and KG-

BERT.

5.3.2 PseudoReasoner Training

The objective function of KG-BERT on the labeled dataset is shown in Equation (5.1), and

the objective function on pseudo labels can be written as:

JU(θ) = Exu∼PU (x)Eŷ∼q(y|xu)[− logPθ(ŷ|xu)]. (5.6)

Here PL and PU are the distribution of the labeled and unlabeled dataset, respectively.

q(y|x) is the distribution of pseudo labels, modeled by the teacher model and filters. After

finetuning KG-BERT initialized with θ∗ on the filtered pseudo labels with Equation (5.6),

we acquire θ∗′.

5.4 Experiments

5.4.1 Baselines

For the supervised learning setting, we use KG-BERT [4] and COMET [56] (GPT2) to

perform CSKB Population. For KG-BERT, as it’s flexible to be adapted using different pre-

trained encoders, we use BERT [35], RoBERTa [175], DeBERTa [176], and BART [177] as

the backbone language models. For BERT, RoBERTa, and DeBERTa, we use the embed-

ding of the [CLS] token in KG-BERT as the representation of the whole triple. For BART,

we follow the ways of doing sequence classification in the original paper [177] to use the

embedding of the end-of-sentence token in the decoder as the representation of the whole

triple.

For the semi-supervised learning setting, we use the following baseline models:

Unsupervised Data Augmentation (UDA). UDA [5] uses consistency training to con-

strain the model to provide invariant predictions with noise added to the input. We adapt
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UDA into the framework of CSKB Population and uses TF-IDF word replacement and

back-translation to provide noise to the input text to be fed into the consistency loss.

Noisy Student. Noisy student [7] trains a student model with noise added during training

iteratively. A teacher model is first trained to provide hard or soft pseudo labels for a

student model to finetune together with the labeled dataset. Soft pseudo labels mean using

logit scores after softmax as labels. Then the student model is iteratively re-used as the

teacher model and a new student model is acquired through each iteration.

Generative Data Augmentation (G-DAUG). G-DAUG [6] leverages text generation lan-

guage models to automatically generate pseudo training data examples for finetuning. Though

it is not designed for semi-supervised learning, we adapt it to our framework of pseudo

labeling to serve as a semi-supervised learning baseline. We use COMET (GPT2-XL) fine-

tuned on Dl to generate pseudo examples with heads from Du. Then, those pseudo labels

are filtered with influence function, diversity heuristics, and KG-BERT scores. Then, those

pseudo examples are used in the same way as in our PseudoReasoner for further finetuning.

We also try to replace COMET with COMET-distill [178], the COMET trained with dis-

tilled commonsense knowledge from GPT3, which has a better performance and capacity

than the vanilla COMET.

5.4.2 Experimental Settings

The learning rate for all models are set as 1e-5, and the batch size is 64. We use the

framework of Huggingface Transformers1 to form our codebase. Early stopping is used

when the best checkpoint is selected and the largest validation AUC is achieved. For all

experiments, we report the average scores across three different random seeds.

For thresholding, we set the thresholds T −
min=−4.0, T −

max=−3.7, T +
min=−2.8, T +

max=−

2.0, by roughly observing the data distribution and representative knowledge triples in dif-

ferent range of plausibility scores. We then randomly down-sample the pseudo examples

so that the number is the same as the original training data. Ablations are provided in

section 5.5.1

1https://huggingface.co/
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Teacher models all
Original

Test Set

CSKB head

+ ASER tail

ASER

edges

N/A (Baseline) 70.9 78.0 63.4 64.6

w/o all filters
RoBERTa-large 71.8 79.1 65.1 64.6
GPT2-small 72.3 79.5 65.1 65.9
GPT2-medium 72.6 79.5 65.8 68.0
GPT2-XL 72.8 80.1 66.3 66.0

w/ all filters
RoBERTa-large 72.3 79.2 65.4 66.3
GPT2-small 73.7 79.8 67.5 68.8
GPT2-medium 74.1 81.3 68.1 69.0
GPT2-XL 74.2 80.1 69.5 69.3

Table 5.4: Performance of PseudoReasoner (RoBERTa-large) using different teacher mod-
els w/ or w/o filters.

5.4.3 Results

The main results are shown in Table 5.3. We compare the results of both supervised learning

and semi-supervised learning approaches with our proposed model PseudoReasoner. The

“all” column presents the overall AUC across all testing examples and is the main metric of

CSKB Population. We also separately present the AUC of different test set categories, In-

domain (Original Test Set) and Out-of-domain (CSKB head + ASER tail, and ASER edges).

In the last two columns, we report the increase by applying different semi-supervised learn-

ing approaches under the same backbone model, where ∆all means the increase of “all”

(AUC) metric and ∆OOD means the increase of AUC for out-of-domain test sets.

For supervised-learning approaches, KG-BERT-based models mostly perform well on

the In-domain test set while have poorer generalization ability to Out-of-domain test sets

compared to COMET (GPT2). As GPT2 is only finetuned on the positive part of the dataset,

it suffers less from the bias of negative sampling in D−
l and has a better generalization on

new knowledge. However, the drawback in In-domain reasoning hinders the overall per-

formance of GPT2-XL from surpassing KG-BERT (RoBERTa-large), even with 4.5 times

more parameters.

Semi-supervised learning baselines can increase the performance of the backbone KG-

BERT (RoBERTa-large), especially for the out-of-domain split. However, the improvement
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Filter all
Original
Test Set

CSKB head
+ ASER tail

ASER
edges

baseline 70.9 78.0 63.4 64.6
w/o filter 72.8 80.1 66.3 66.0
+ influence 73.2 78.0 68.3 70.6
+ KG-BERT 73.7 79.5 68.9 68.6
+ both 74.2 80.1 69.5 69.3

Table 5.5: The effects of different filters on pseudo labels when KG-BERT (RoBER-
Ta-large) is the backbone, and GPT2-XL is the teacher model.
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Figure 5.3: Ablation study on different T +
max and T −

min.

on the In-domain part remains insignificant, and the improvement on the out-of-domain

part is not as competitive as our PseudoReasoner. As we use the same code base and

training method to train all semi-supervised learning methods, the main differences between

PseudoReasoner and other SSL methods lie in the ways of processing the unlabeled dataset.

We leave the detailed discussions in the next section (Section 5.5.2).

5.5 Analysis and Discussions

In this section, we discuss the ablation study on model components, the comparisons with

semi-supervised learning baselines, diversity analysis, and discussions about why Pseu-

doReasoner works.
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5.5.1 Ablation Study

We study the effects of different teacher models and the filters on pseudo labels.

Teacher Models

We compare four representative teacher models, KG-BERT (RoBERTa-large) and GPT2

(small, medium, and XL), on how pseudo labels provided by them can influence the model

performance. The ablation results are shown in Table 5.4. From the comparison between

KG-BERT (RoBERTa-large, 340M parameters) and GPT2-small (117M) and -medium

(345M), which are of the same scale of model size, we find that GPT2 can perform con-

sistently better than KG-BERT as teacher models. This can be validated by the out-of-

distribution performance in Table 5.3 for the supervised learning baselines, where KG-

BERT performs almost 3 points behind GPT2-medium in terms of OOD AUC. This ablation

indicates the importance of powerful generalizable teacher models on pseudo-labeling.

Thresholding

We study the sensitivity of thresholds in Figure 5.3. In this ablation, for simplicity, we

set different T +
max for positive pseudo examples, and sample the same amount of triples

as the original training set whose α(x) < T +
max in descending order. We do the same

ablation study on T −
min for negative pseudo examples. When tuning one threshold, other

thresholds are fixed as in section 5.4.2. The pseudo labels under different thresholds are

directly used for PseudoReasoner without filtering, and we plot the test set AUC given

different thresholds. We see that the resulting AUC is stable within certain ranges of T +
max

and T −
min. While when we set T −

min to −∞, which indicates no thresholds for negative

examples are set, the performance drops drastically.

Pseudo Label Filter

We conduct experiments with different combinations of filtering mechanisms in Table 5.5

for KG-BERT (RoBERTa-large). We can see that both filters (influence function and KG-
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Figure 5.4: KG-BERT plausibility distribution for positive/negative pseudo labels provided
by GPT2.

w/o filter influence KG-BERT both

UDA 3.3 M - - -
G-DAUG 1.1M 399.8K 323.3K 160.1K

PseudoReasoner 932.6K 408.5K 373.0K 170.1K
Original 1.1 M - - -

Table 5.6: Number of pseudo examples used in experiments for semi-supervised methods.
The “Original” row indicates the number of training examples in the original training set.

BERT probability) benefit the model performance, while KG-BERT probability contributes

to a more substantial improvement. Figure 5.4 shows an illustration of the KG-BERT plau-

sibility α(x) = P ∗
θ (y=1|x) of positive/negative pseudo examples provided by GPT2. The

positive pseudo examples tend to score higher on KG-BERT than negative pseudo exam-

ples. Adding KG-BERT probability as an additional filter with the labels provided by GPT2

is similar to an ensembling procedure.

5.5.2 Comparisons with Other Semi-supervised Learning Methods

Computational Cost

The number of pseudo examples used for semi-supervised-learning baselines are listed in

Table 5.6. We basically use the same scale of unfiltered pseudo examples for G-DAUG and
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PseudoReasoner while using 3 times more unlabeled examples for UDA as it requires more

unlabeled data. Specifically, G-DAUG (COMET-distill) leverages the distilled knowledge

from GPT3 [178], which further magnifies the computational cost to more orders of mag-

nitude. In all, under the same scale of pseudo labels, PseudoReasoner can achieve far better

results than UDA and G-DAUG.

Analysis

In UDA, though robustness can be improved with consistency loss on noised inputs, there

is no new commonsense knowledge added to the training procedure, making it hard for the

model to be equipped with novel knowledge reasoning ability.

For G-DAUG, the critial part lies in the generation of negative examples. We finetune

two separate GPT2 on D+
l and D−

l , and the one finetuned on D−
l is used to generate negative

examples. Compared with the GPT2 finetuned on D+
l , the GPT2 finetuned on D−

l is of a

relatively lower quality as triples in D−
l don’t follow specific commonsense patterns. We

check the text generation quality of GPT2-XL finetuned on D+
l and D−

l and find that the

BLEU-2 scores on two corresponding held-out test sets are 0.23 and 0.10, indicating the

generation of negative examples are of lower quality.

For Noisy-student, the main differences between our PseudoReasoner is that they use

KG-BERT to provide pseudo labels, and they are soft pseudo labels. The main reason be-

hind is that as soft labels are used, the teacher model has to be a discriminative model such

as KG-BERT, which has a poor generalization ability than GPT2 used in our PseudoRe-

asoner. Moreover, similar to the case in UDA, noisy is not a dominate factor in CSKB

Population, while more high-quality novel commonsense knowledge matters more.

5.5.3 Semantic Diversity Analysis

An important contribution of PseudoReasoner is that we extend the knowledge space for

training from limited CSKBs to a more broad, unlabeled resource. We use the proportion of

unique uni-grams and bi-grams as an indicator of semantic diversity to measure the scale to

which models are exposed to diverse novel knowledge. Figure 5.5 shows that after filtering
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Figure 5.5: Diversity analysis with the proportion of unique uni/bi-grams in the labeled
dataset, the pseudo labels, and the filtered pseudo labels. With filtering, the diversity can be
significantly improved.

with influence function and KG-BERT probability, the diversity can be improved by around

3 to 4 times than the labeled dataset.

5.5.4 Relationship with Knowledge Distillation

While knowledge distillation focuses on distilling knowledge from larger models to smaller

ones, our method does not necessarily need the teacher model to be more significant. The

teacher GPT2-medium, which is of the same size as the student KG-BERT, can work pretty

well and is comparable to GPT2-XL.

5.6 Conclusion

In this section, we propose a semi-supervised learning framework for CSKB Population

based on pseudo labels. Using a teacher model and a special filtering mechanism on pseudo

labels, we achieve the state-of-the-art of CSKB Population in terms of both in-domain and

out-of-domain performance. Experiments also show that our CSKB Population benefits

more from high-quality novel knowledge than other semi-supervised learning techniques
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such as noise and consistency training. This work brings a new perspective of improving

out-of-domain generalizable commonsense reasoning ability on CSKBs.
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CHAPTER 6

LEVERAGING COMMONSENSE

KNOWLEDGE BASES FOR REASONING

6.1 Extrinsic Evaluation

In this section, we study two downstream applications of CKBP. After acquiring a popula-

tion model, it acts as a scoring function to determine whether a triple from the candidate

knowledge base G is plausible or not, thus serving as a source of commonsense knowledge

acquisition [110]. We leverage the populated knowledge as additional training data for both

generative commonsense inference (COMET; [56]) and zero-shot commonsense question

answering [162].

6.1.1 Generative Commonsense Inference (COMET)

Setup We follow the basic settings as in the original ATOMIC20
20 paper [10] to generate

commonsense tails t given head h and relation r as input. The evaluation dataset is the

annotated 5,000 test examples provided by ATOMIC20
20 [10]. We use BLEU [179], ROUGE-

L [180], METEOR [181], and CIDEr [182] as the automatic evaluation metrics.

Specifically, we compare the performance of the following training paradigms: 1) Train-

ing the model using the official training set of ATOMIC20
20. 2) Pre-training the model using

a comparable amount of CKBP-acquired data, and subsequently fine-tune on ATOMIC20
20

training set. 3) Training on a mixture of CKBP-acquired data and ATOMIC20
20 training data.

We filter the CKBP-acquired data using two filters. First, we employ two typical popula-

tion models, RoBERTa-L [163] fine-tuned on CKBP training set and Vera [161] to provide

a plausibility score for each triple. We set an empirical threshold of 0.8 and selected triples

with plausibility scores higher than that of populated commonsense knowledge. Second,

we utilize a diversity filter defined in G-DAUG [183], which is a heuristic favoring diverse
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Training Data B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr

ATOMIC 41.8 26.6 19.2 14.5 50.0 21.2 66.1
ATOMIC + CKBPRoBERTa-L (V1) 41.9 26.6 18.8 13.8 49.7 21.2 66.2
ATOMIC + CKBPRoBERTa-L (V2) 42.5 26.7 18.8 13.8 50.2 21.4 67.1
ATOMIC + CKBPvera 42.9 27.2 19.4 14.4 50.2 21.4 67.5
ATOMIC + CKBPvera (mix) 43.3 27.6 19.7 14.7 50.3 21.5 67.4

Table 6.1: Performance (%) of GPT2-Large on generative commonsense inference mod-
eling (COMET). B is for BLEU scores. ATOMIC stands for ATOMIC20

20 training set, and
CKBP stands for our CKBP data. Subscripts under CKBP indicate the population model to
select populated commonsense knowledge. The best performances are bold-faced.

n-grams. The diversity filter is applied such that we select the same amount of CKBP-

acquired data as the training set of ATOMIC20
20.

We choose GPT2-Large as our backbone language model. We didn’t use GPT2-XL as

in [10] because the XL version performs relatively poorer than the Large version in terms

of most automatic evaluation metrics on the evaluation set of ATOMIC20
20 despite twice the

model size. The learning rate is set as 1e-5, and we train the model for three epochs on both

CKBP-acquired data and ATOMIC20
20 training data.

Results and Analysis The results of generative commonsense inference are presented in

Table 7.3. First, adding CKBP-acquired commonsense knowledge for either pre-training

or co-training can yield a general performance improvement in generative commonsense

inference. Specifically, the model trained on ATOMIC + CKBP Vera achieves the best

performance and outperforms that only fine-tuned on ATOMIC20
20 on all automatic evalu-

ation metrics. This indicates that leveraging the abundant unlabeled discourse knowledge

from ASER (G), accompanied by appropriate plausibility filtering through the population

model, can effectively serve as valuable augmented data to enhance commonsense reason-

ing. Among the population models, we observe that a better population model, as evaluated

by our CKBP v2 evaluation set, corresponds to a higher performance gain in the generative

commonsense inference task. This finding highlights the promising potential of develop-

ing improved population models, which subsequently contribute to enhanced downstream

applications.

Second, the RoBERTa-L model selected by CKBP v2 demonstrates greater efficacy in

enhancing generative commonsense inference compared to the model selected by CKBP
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Model CSKB a-NLI CSQA PIQA SIQA WG Avg.

Zero-shot Baselines
Random - 50.0 20.0 50.0 33.3 50.0 40.7
Majority - 50.8 20.9 50.5 33.6 50.4 41.2
RoBERTa-L [163] - 65.5 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L [186] - 59.9 25.4 44.8 47.8 50.3 45.6
Self-talk [169] - - 32.4 70.2 46.2 54.7 -
COMET-DynGen [170] ATOMIC - - - 50.1 - -
SMLM [187] * 65.3 38.8 - 48.5 - -
MICO [188] ATOMIC - 44.2 - 56.0 - -
STL-Adapter [189] ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7

Backbone: DeBERTa-v3-Large 435M

DeBERTa-v3-L (MR) [162] ATM-10X 75.1 71.6 79.0 59.7 71.7 71.4
DeBERTa-v3-L (MR) [162] ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8
DeBERTa-v3-L (MR) [162] CKBP (our) 79.2 69.6 77.9 64.3 77.2 73.6

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 70.2

Supervised Learning & Human Performance
RoBERTa-L (Supervised) - 85.6 78.5 79.2 76.6 79.3 79.8
DeBERTa-v3-L (Supervised) - 89.0 82.1 84.5 80.1 84.1 84.0
Human Performance - 91.4 88.9 94.9 86.9 94.1 91.2

Table 6.2: Zero-shot evaluation results (%) on five commonsense question answering
benchmarks. The best results are bold-faced, and the second-best ones are underlined.
The performance of supervised learning and human are for reference only.

v1. This finding suggests that CKBP v2 exhibits improved alignment with real-world

downstream applications, surpassing its predecessor in terms of practical utility. It’s also

noteworthy that COMET is an important task that inherently benefits a pile of further down-

stream tasks that requires commonsense reasoning, including zero-shot commonsense ques-

tion answering with self-talk [169] and dynamic graph construction [170], narrative rea-

soning [184], and dialogue generation [185]. In this regard, our work exhibits significant

potential for generalization to tasks extending beyond the realm of commonsense reasoning.

6.1.2 Zero-shot Commonsense QA

Setup For the zero-shot commonsense question answering (QA) task, we adopt the task

definition and evaluation pipeline proposed by [162] to evaluate the benefit CKBP v2 brings

to extrinsic QA. Several methods have been proposed to tackle this task, including those

by [169, 170, 189] The most effective pipeline, as proposed by [162], injects commonsense
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knowledge into pre-trained language models through fine-tuning on QA pairs synthesized

from knowledge in CSKBs. To perform this fine-tuning, the head h and relation r of a

(h, r, t) triple are transformed into a question using natural language prompts, while the

tail t is used as the correct answer option. Distractors or negative examples are created

by randomly sampling tails from triples that do not share common keywords with the head.

This fine-tuning process enhances the model’s knowledge not only for QA benchmarks con-

structed from CSKBs, such as SocialIQA [21] derived from ATOMIC, but also improves its

ability to answer previously unseen commonsense questions in a more generalized manner.

We adopt the original QA synthesis and model training pipeline by [162] on the original

ATOMIC and the one augmented with populated knowledge from CKBP v2 to ablatively

study the sole benefit that knowledge in CKBP v2 brings. Similar with that in COMET

experiments, we use the best-performed CKBP model, Vera, to score the whole population

space in ASER and select the populated knowledge with plausibility scores of over 0.8.

Then, the same diversity filter as in Section 6.1.1 is used to downsample the number of

populated triples to be comparable with the size of the training set in ATOMIC20
20. For

the QA model, DeBERTa-v3-Large [186] is used as the backbone, and we train the model

using a learning rate of 7e-6 for one epoch on both the CKBP-acquired data and ATOMIC-

synthesized data as provided by [162].

Once trained, we evaluate the model on the validation splits of five commonsense QA

benchmarks: Abductive NLI (aNLI; [190]), CommonsenseQA (CSQA; [17]), PhysicalIQA

(PIQA; [125]), SocialIQA (SIQA; [21]), and WinoGrande (WG; [19]). Accuracy is used as

the evaluation metric. Furthermore, we compare our model not only against existing zero-

shot knowledge injection methods [169, 170, 187, 188, 189, 162] but also against large

language models such as ChatGPT [41] and GPT-3.5 [100].

Results and Analysis The zero-shot commonsense QA results are shown in Table 6.2.

Among all the zero-shot methods, the model trained on CKBP v2 demonstrates the high-

est performance. It outperforms models trained solely on ATOMIC (with an increase of

2.2%) and ATOMIC10X [178] (with an increase of 1.8%). Importantly, our method sur-

passes large language models by an average of 3.4%. This performance gain highlights the
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significant advantage of our populated commonsense knowledge over both human annota-

tions and distilled knowledge from large language models. Furthermore, we observe that

the model trained on CKBP-acquired data shows the most improvement on the aNLI and

WinoGrande benchmarks. One potential reason for this is that the populated knowledge

in CKBP v1 encompasses a wider range of commonsense knowledge beyond only social

commonsense, which benefits tasks involving abductive reasoning (based on narrative) and

pronoun coreference resolution.

6.2 Conclusion

We propose the pipeline of using populated commonsense knowledge as training data for 1)

question answering models and 2) generative commonsense inference models. Experiments

show that including the populated knowledge as additional training data can help improve

downstream commonsense reasoning on six datasets.
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CHAPTER 7

COMPLEX REASONING OVER

COMMONSENSE KNOWLEDGE BASES

7.1 Introduction

Large language models struggle to effectively perform reasoning when presented with com-

plex tasks, such as reasoning about multiple events and their relationships. This shortcom-

ing is due to both the inherent difficulty of reasoning over multiple pieces of information,

as well as a lack of adequate-scale, supervised training datasets for learning [61]. Unfor-

tunately, complex and multi-hop commonsense reasoning benchmarks [9] are both techni-

cally challenging and financially expensive to curate. Consequently, previous efforts either

constructed datasets (a) with simpler reasoning structures, such as single-hop chains [62],

(b) using distant supervision based on one-hop inference [9], or (c) with human-annotations,

but at a relatively small scale [8].

To alleviate this training data bottleneck, recent works have explored extracting and for-

mulating questions from existing CommonSense Knowledge Graphs (CSKGs [10]), which

store commonsense triples. However, using CSKGs to produce high-quality reasoning

datasets poses several challenges. First, while the shared entities in commonsense triples

encode a complex, interconnected graph structure, the sparsity of this structure limits the

number of potential questions that encode more than one reasoning hop [21, 49]. Second,

triples in CSKGs are represented in a context-free manner, such as the event “PersonX gets

tired of it” in Figure 7.1, yielding ambiguous (and sometimes incorrect) human annotations

in the CSKG, e.g., ATOMIC [191] has an error rate of over 10%. These errors propagate

when triples are naively combined to construct reasoning questions. Finally, also because

triples in CSKGs are represented in a context-free manner, additional context must be added

to make questions fluent, a problem exacerbated in multi-hop settings where the entities of

multiple reasoning hops must be coherently verbalized together.
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find new things to do

PersonX goes skydiving

PersonX gets tired of it

(the intention of PersonX)

xIntent

xWant
(then PersonX wants to)

Verbalization

After getting tired of it, PersonX goes skydiving

PersonX is living a boring life.

🤖
LLM-added
context

Rule-based
discourse

Question: What’s both the intention of PersonX going skydiving
and what X wants to do after PersonX getting tired of it?

Answer: find new things to do

𝑞 𝑉? = 𝑉?: xIntent X goes sky diving , 𝑉?
∧ xWant (X gets tired of it, 𝑉?)

Figure 7.1: An example of conjunctive logical queries and their verbalization as complex
commonsense inferences.

In this section, we construct COM2 (COMplex COMmonsense), a novel commonsense

reasoning dataset using multi-hop queries in commonsense knowledge graphs to construct

question-answer pairs requiring complex narrative reasoning. To build this dataset, we use

conjunctive logical queries [63], a subset of First-Order Logical queries that use existential

quantifiers and conjunction. The multi-hop projection operation involves inferring hidden

contexts, while the intersection operation enables reasoning among multiple events, encom-

passing common cause or effect, and abduction. For example, in Figure 7.1, an intersection

of two triples can be verbalized to a short narrative, and the process of inferring the common

tail can be seen as an abduction of the hidden cause between the two heads.

To address the challenges above, we propose to first densify the CSKG to merge nodes

with high semantic similarity, increasing the connectivity of the graph. Then, we use an

off-the-shelf plausibility scorer to filter out low-quality triples, avoiding error propagation

as we construct more complicated queries. Finally, we verbalize the queries in a natural

language context with handcrafted rules and Large Language Models to derive coherent

and informative narrative contexts for our questions. Our final COM2 dataset comprises

790K question-answer pairs (both with multiple-choice and generative answer settings),

including 1.3K examples that we manually verify for evaluation.
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Our results demonstrate the challenges faced by even powerful LLMs and supervised

question-answering models on the COM2 dataset, underscoring the difficulty of performing

complex multi-hop reasoning. Moreover, fine-tuning question-answering models and gen-

erative commonsense inference models on COM2 leads to substantial improvements across

eight commonsense reasoning datasets, showing the efficacy of our framework for boosting

commonsense reasoning ability.

To conclude, our contributions are three-fold. First, we present a pipeline for sampling

and verbalizing complex logical queries from CSKGs, to form a complex commonsense

reasoning benchmark, COM2, with minimal human effort. Second, we benchmark the com-

plex reasoning ability of various state-of-the-art language models and question-answering

models on COM2. Finally, we validate the benefit of fine-tuning COM2 on eight zero-shot

commonsense reasoning datasets.

7.2 Methodology

In this section, we introduce the construction details of COM2, including the pre-processing,

sampling, and verbalization of complex queries, as well as the details of human annotations.

7.2.1 Pre-processing

We use ATOMIC20
20 [10], a comprehensive Commonsense Knowledge Graph covering ev-

eryday social, physical, and event-level knowledge, as the base CSKG. Before sampling

queries, we address the sparsity and quality issues first.

Sparsity CSKGs are usually highly sparse compared to factual KGs due to the diversity

and scale of commonsense [192], resulting in many isolated nodes that can hardly be sam-

pled as part of a complex query. To alleviate this issue, we develop a set of rules and use

sentence embedding similarity to merge nodes in the CSKG, leading to 22.4% of nodes

being merged and an average degree increase of 25.3%.
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2i 3i
2p 3p

1p

ip pi

Anchor Entity

Free Variable

Answer Entity

Training Query Types

Unseen Query Types

Figure 7.2: Visualization of query structures. The anchor entities and relations are specified
to instantiate the query. ‘p’ and ‘i’ represent projection and intersection, and the number
ahead of p and i indicates the number of anchor entities and free variables.

Quality The error rate of CSKGs (e.g., ATOMIC has an error rate of ∼10%) can be

problematic when we consider the intersection and projection of more than two triples

(errors in a single triple could propagate to many multi-hop queries). We use an off-the-

shelf plausibility scorer Vera [193], a T5-based scorer fine-tuned on 2 CSKGs and 19 QA

datasets, to score every triple in terms of commonsense plausibility (between 0 to 1). We

filter out triples (∼10%) with a plausibility score lower than 0.5, the threshold provided in

Vera [193] for plausible statements.

7.2.2 Query Sampling

The query structures that we study are visualized in Figure 7.2. Following Query2box [128],

we use projections (1p, 2p) and intersections (2i, 3i) as training queries, and leave complex

queries ip and pi as zero-shot evaluation queries. To examine scenarios involving negation

and differentiate them from regular 2i queries, we use the term “2i-neg” to represent 2i

queries where one of the relations is “HinderedBy”. In this formulation, multi-hop pro-

jection involves inferring hidden reasoning contexts, while intersection operations require

reasoning about complex interactions between events.

Given a query structure, we use pre-order traversal to sample free variables and anchor

entities starting from an answer entity. We sample predecessors uniformly based on (rela-
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childish

V1: X pulls out Y’s phone

V2: X swings Y’s legs

xAttr

2i: Common Attribution Context:
X and Y were at a park. Suddenly, Y's phone starts ringing and X reaches over 
and pulls out Y's phone from their pocket. Just as X does that, Y playfully kicks 
their legs in the air, and X swings Y's legs in response.
Question:
What state is both what X is seen as given V1 and what X is seen as given V2?

xAttr

2p: 2nd order Effect

pi

V1: X starts a new life 

V?: X makes new friends

socialize

Question:
What event or state is what X wants to do after what 
X wants to do after V1? 

xWant

xWant

2i-negative: Negated Common Cause

V1: X begins to hurt

V2: X is in pain

xWant

HinderedBy

take 
medication

Context:
X starts to feel a sharp pain in their side. However, X is not in pain anymore 
later.
Question:
What event or state is both what X wants do after V1 and also hindered V2?

V1: X works hard for months

V2: X joins Y's ranks

V?: PersonX get a promotion

Context:
X was looking for a new opportunity and decided to join Y's ranks. After joining, 
X works hard for months to prove their dedication and commitment.
Question:
What event or state is both what Y wants to do after {what X wants to do after X 
works hard for months}, and also what Y wants to do after X joins Y's ranks?

xWant

oWant

congratulate X
oWant

Figure 7.3: Examples of different query types, their verbalization, and corresponding ques-
tions.

tion, entity) pairs. During sampling, to avoid over-sampling on nodes with extremely high

degrees, we empirically set a cut-off degree T = 10 to only sample from the top T neigh-

bors of a node scored by Vera. In the end, we conduct a post-order traversal starting from

the anchor entities to find all the answers to the query, in addition to the starting answer

entity.

Distractor Sampling We sample 4 additional candidate distractors for each query, where

2 of them are randomly sampled across the whole CSKG, and 2 of them are sampled from

the neighbors of the anchor entities that are not the answers to the whole query, represented

as adversarial negative examples. When fine-tuning a question-answering model, the nega-

tive examples are used as synthetic question-answering pairs for training. In the evaluation

set, these candidate negative examples, together with the sampled answer, are manually

annotated to form a gold evaluation set.

7.2.3 Verbalization

CSKGs are constructed in a context-free manner. To make the logical queries on such

context-free triples more human-interpretable, we introduce an additional step of verbaliz-

ing the anchor entities to a narrative, to effectively acquire fluent and plausible narrative-

inference pairs.
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Method 2i 2i-neg 3i 2p ip pi All

API-based LLMs
gpt-3.5-turbo-0613 33.56 43.12 42.01 38.66 38.05 28.40 37.74

- 1-shot 43.31 35.31 58.45 57.73 51.33 62.96 48.22
- 1-shot w/ CoT 45.80 36.43 54.34 57.73 50.44 66.67 48.75
- 8-shot (2i, 2p) 48.52 41.26 57.08 67.53 53.10 74.07 53.22
- 8-shot (2i, 2p) w/ CoT 52.61 46.10 60.27 59.79 52.21 65.43 54.37
gpt-4-1106-preview 44.67 46.47 52.05 32.47 40.71 53.08 44.64

- 1-shot 47.85 42.01 50.68 38.66 44.25 50.62 45.63
- 1-shot w/ CoT 48.97 46.46 52.96 49.48 52.21 58.02 50.04
- 8-shot (2i, 2p) 54.87 46.47 58.90 45.88 52.21 66.67 53.00
- 8-shot (2i, 2p) w/ CoT 57.82 49.07 62.56 61.34 52.21 66.67 57.40

Open-source (QA) Language Models
HyKAS (162, zero-shot) 34.92 39.41 27.85 41.75 37.17 33.33 35.76
CAR (194, zero-shot) 37.41 30.48 37.44 57.73 32.74 53.09 39.56
Llama2 (7B) [195] 35.15 21.93 39.27 35.57 28.32 51.85 33.64
Vera (5B) [193] 47.62 27.51 40.18 66.49 52.21 58.02 46.09
UnifiedQA-v2 [196] 56.23 39.41 62.56 58.76 51.33 62.96 54.21
Flan-T5 (11B) [197] 58.28 47.21 65.30 76.29 56.64 79.01 60.97

Fine-tuned on COM2
DeBERTa-v3-Large (+COM2) 60.09 58.36 69.41 61.86 59.29 81.48 62.79
CAR-DeBERTa-v3-Large (+COM2) 61.22 56.13 69.86 68.56 56.64 85.19 63.78

Table 7.1: Model performance (%) on the multiple-choice question answering evaluation
set of COM2.

Anchor Entity Verbalization We consider a rule-based verbalizer and a ChatGPT-driven

verbalizer. In the rule-based verbalizer, we add a discourse marker between the two or three

anchor entities depending on the semantics of the query relations. For example, a simple

situation would be adding an “and” or “then” between two anchor entities in a 2i query. To

make the query more human-understandable, we consider using ChatGPT to synthesize the

necessary contexts to make the query an actual narrative.

Relation Verbalization The multiple relations in complex queries can be deterministi-

cally converted to a question using the natural language descriptions of the relations. Ex-

amples can be found in Figure 7.3.
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Model CSKG Out-of-domain In-dom.

a-NLI CSQA PIQA SIQA WG Avg. COM2

Random - 50.0 20.0 50.0 33.3 50.0 40.7 20.0
DeBERTa-v3-L [186] - 59.9 25.4 44.8 47.8 50.3 45.6 14.7
Self-talk [169] - - 32.4 70.2 46.2 54.7 - -
COMET-DynaGen [170] ATOMIC - - - 50.1 - - -
SMLM [187] * 65.3 38.8 - 48.5 - - -
MICO [188] ATOMIC - 44.2 - 56.0 - - -
STL-Adapter [189] ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7 -

Large Language Models
GPT-3.5 - 61.8 68.9 67.8 68.0 60.7 65.4 -
GPT4 - 75.0 43.0 73.0 57.0 77.0 65.0 44.6
ChatGPT - 69.3 74.5 75.1 69.5 62.8 70.2 37.7

+ zero-shot CoT - 70.5 75.5 79.2 70.7 63.6 71.9 28.9

Backbone: DeBERTa-v3-Large 435M

HyKAS [162] ATM-10X 75.1 71.6 79.0 59.7 71.7 71.4 27.7
HyKAS [162] ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8 35.8
CAR [194] ATOMIC 78.9 67.2 78.6 63.8 78.1 73.3 36.8
CAR [194] ATMC 79.6 69.3 78.6 64.0 78.2 73.9 39.8
HyKAS + COM2 (Ours) ATM, COM2 78.4 69.9 78.7 64.1 78.3 73.9 62.8
CAR + COM2 (Ours) ATMC

, COM2 81.2 70.9 80.3 65.6 77.4 75.1 63.8

Human Performance - 91.4 88.9 94.9 86.9 94.1 91.2 -

Table 7.2: Zero-shot evaluation results (%) on five out-of-domain commonsense question
answering benchmarks, and the in-domain evaluation set of COM2. The best results are
bold-faced, and the second-best ones are underlined.

7.2.4 Human Annotation

To support reliable automatic evaluation, we formalize the problem of complex common-

sense reasoning as a multi-choice question answering task, with one true answer, three

distractors, and a fifth option indicating “None of the answers are correct”. We crowd-

sourced the answers using Amazon Mechanical Turk (AMT). The workers are given the

verbalized query as the context, the verbalized relations as the question, and the sampled

(negative) answers. If no sampled answers are correct, then the worker is asked to select

an additional “None of the answers are correct” option. If the verbalization itself does not

make sense, the worker can also select another option “The context doesn’t make sense or

is meaningless” and we discard the example. Each question is annotated by three workers.

The overall per-option inter-annotator agreement is 78%, and the Fleiss kappa is 0.445, in-

dicating moderate agreement. The workers are paid, on average, 16 USD per hour. Our

final dataset consists of ∼782k training examples and 1317 manually validated evaluation

examples.
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7.3 Experiments

We conducted experiments on the evaluation set of COM2, which was formulated as a

multi-choice question answering (MCQA) task. Specifically, we examine the performance

of state-of-the-art off-the-shelf language models on COM2 and also study the effect of

training a question-answering model on the distantly supervised training set of COM2.

7.3.1 Setup

We use popular API-based and open-source LLMs as baselines. Following the standard

practice of prompting LLMs for QA [198], we initialize a prompt that takes “[Context]

[Question] [Options]” as the input and ask the model to only output the associated symbol

(e.g., ‘A’) in the QA pair as the prediction. For open-source language models like Flan-T5

and Llama2, we use the same prompt and compute the logits received by each of the options

in the first prediction token.

We also study the effect of fine-tuning a question-answering model on the synthetic

training queries discussed in Section 7.2.2. We follow the pipeline by HyKAS [162], which

fine-tunes language models on QA pairs synthesized from one-hop knowledge in CSKGs

and extends them to complex queries. For one-hop (1p) triples, the head and relation are

transformed into a question with pre-defined prompts. For complex queries, the verbalized

queries (as illustrated in Section 7.2.3) are regarded as the context, and questions are also

transformed with a different prompt template depending on the relations. The tails to the

one-hop triple or the sampled answer to the query are regarded as the correct answer, and

the negative examples are randomly sampled across the whole CSKG following a keyword

overlapping filtering [162, 194]. We use DeBERTa-v3-large as the backbone encoder.

7.3.2 Results and Analysis

Our results are presented in Table 7.1. We observe that Chain-of-Thought (CoT) improves

reasoning performance, as it allows the model to first induce the causes or effects of individ-

ual events in intersection-based queries (2i and 3i), or induce hidden variables in projection-
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Model Training Data Multi-Event Paragraph-Level Single-Event COM2

B-2 R-L BERT R-L CIDE BERT R-L CIDE BERT R-L CIDE BERT

(Distantly) Supervised Learning

COMET-M (BART-L) MEI 25.1 33.6 64.9 - - - - - - - - -
COMET-M (GPT-2-L) MEI 16.2 25.7 55.1 - - - - - - - - -
ParaCOMET (GPT-2-L) PCD - - - 18.8 27.8 60.2 - - - - - -

Zero-shot Learning Supervised

COMET 1p 1.20 2.73 38.9 3.5 6.4 25.7 50.0 66.1 75.1 10.0 20.7 44.3
COMET-distill ATM10x 1.20 3.55 12.7 11.8 16.8 29.5 1.6 4.8 24.3 8.3 11.9 36.1
COM2-COMET 1p, 2i 8.87 15.2 46.4 13.8 22.1 53.7 50.7 68.0 77.1 13.6 26.1 39.8
COM2-COMET 1p, 2p, 2i, 3i 5.41 10.4 44.8 9.2 16.6 44.1 50.4 66.9 77.1 14.7 33.0 46.3

LLama2-7b - 1.81 4.14 45.7 2.2 2.2 48.6 5.4 2.9 51.5 3.9 6.7 44.9
COMET-LLama2-7b 1p 7.62 14.4 44.2 9.1 12.3 51.0 27.5 26.4 64.2 10.9 22.3 44.9
COM2-LLama2-7b 1p, 2i 8.82 16.4 47.5 14.6 22.1 55.3 31.6 31.1 66.0 35.7 107.2 61.3
COM2-LLama2-7b 1p, 2p, 2i, 3i 8.22 15.4 47.0 15.9 21.3 55.3 31.3 29.8 65.5 35.6 105.0 60.1

Table 7.3: Experimental results on downstream narrative commonsense reasoning, includ-
ing in a multi-event [8] setting, and a paragraph-level setting [9]. In-domain settings in-
clude single-event generation and complex inference in COM2. We use BLEU-2 (B-2),
ROUGE-L (R-L), CIDEr (CIDE), and BERTScore (BERT) as the evaluation metrics.

based queries (2p as in Figure 7.2). Adding eight-shot exemplars (consisting of 2i, 2i-neg,

and 2p queries) further improves performance among prompting baselines.

For models fine-tuned on complex queries using HyKAS and CAR, we observe that

the synthetic training pairs, despite lacking manual annotation, serve as valuable distant

supervision signals. They enhance the complex reasoning capability of HyKAS and CAR,

surpassing the performance of the 8-shot GPT-4 model with CoT by 6%. CAR + COM2

also outperforms the 11B version of UnifiedQA-v2 and Flan-T5, which are both fine-tuned

on numerous (commonsense) question answering datasets, by 9% and 3%, respectively.

7.4 Downstream Evaluation

In addition to benchmarking Complex Commonsense Reasoning, we also study the effect

of leveraging COM2 as training data to generalize to other downstream commonsense rea-

soning tasks. As tasks, we use zero-shot CommonSense Question Answering (CSQA), and

Generative Commonsense Inference, including one-hop, multi-event, and paragraph-level

settings.
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7.4.1 Commonsense Question Answering

Setup The task of zero-shot commonsense QA involves selecting the most plausible op-

tion for commonsense questions without training on examples from the benchmark dataset.

We directly leverage the model we trained in Section 7.3, the DeBERTa-v3-large-based

model fine-tuned on synthetic question pairs from both ATOMIC and COM2, and check the

performance on five popular commonsense question answering datasets: Abductive NLI

(aNLI; [190]), CommonsenseQA (CSQA; [17]), PhysicalIQA (PIQA; [125]), SocialIQA

(SIQA; [21]), and WinoGrande (WG; [19]). As baselines, we consider the same meth-

ods, HyKAS [162] and CAR [194], but use other CSKGs as training sets. In Table 7.2,

ATM-10X refers to ATOMIC-10x from [178], and ATMC refers to the training data from

CAR [194] which is augmented from ATOMIC with conceptualization.

Results and Analysis We report model performance in Table 7.2. We observe the inclu-

sion of COM2 and one-hop triples from ATOMIC as training data for CAR and HyKAS

yields significant improvements in question answering ability. Notably, the combination

of CAR and COM2 achieves the highest performance among all models, surpassing even

ChatGPT and GPT-4, despite having a parameter size of at least two orders of magnitude

smaller.

Notably, when using CAR as the base model, training on COM2 leads to the highest

performance gain of around 1.8% for a-NLI. When evaluating on a-NLI, which includes

instances of abductive reasoning, the model may be helped by learning from 2i queries

where one relation represents cause and the other represents effect (abduction examples in

Figure 7.1 and Figure 7.3). Meanwhile, the performance on WinoGrande was adversely af-

fected, likely because Winogrande primarily focuses on identifying distinguishing features

of entity pairs. The benefits from learning event-event interactions from COM2 may not

transfer well to this setting.
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7.4.2 Generative Commonsense Inference

Setup We study generative commonsense inference as an additional evaluation task. We

include multi-event commonsense generation (COMET-M; [8]) and paragraph-level com-

monsense generation (ParaCOMET; [9]) as two out-of-domain evaluation tasks. We also

include the vanilla COMET [56] as an additional in-domain evaluation, which focuses on

1p queries that require generating the tail given head and relation as the input. We also

conduct experiments on the generative sub-task of COM2, where verbalized context and

question inputs are used to inferences. The annotated ground answer options are used as

references.

For the (distantly) supervised learning baselines, we fine-tune GPT-2-large on the anno-

tated multi-event inference dataset (MEI) from COMET-M [8] and distantly labeled PCD

dataset from ParaCOMET [9] as a reference. In our zero-shot learning setting, we study

the effect of fine-tuning COMET (GPT-2-large) on ATOMIC and different query types of

COM2. We also study fine-tuning an LLM, Llama2-7b, by converting triples and queries to

an instruction-tuning format, following the prompt template in Section 7.2.3. We leverage

the framework of Meditron [199]1 to fine-tune Llama2-7b. We fine-tune on a mixture of

different query types as detailed in the Training Data column. We present the performance

results of models fine-tuned on either the annotated or distantly supervised training set for

both tasks as reference benchmarks. Specifically, we use MEI for COMET-M and PCD for

ParaCOMET. To ensure diversity and prevent overfitting to common tails, complex queries

are selected using an n-gram-based diversity filter [183].

Results and Analysis We present the results in Table 7.3. Compared to models fine-

tuned solely on one-hop triples, COMET models fine-tuned on additional complex queries

demonstrate enhanced generative commonsense inference capabilities for multi-event and

paragraph-level scenarios. When comparing different query types, fine-tuning solely on

2i queries yields the most significant improvement in reasoning capability, likely because

2i queries provide more explicit reasoning signals compared to 2p queries, which can be

1https://github.com/epfLLM

96



ambiguous due to the large candidate space of the hidden event. For example, the average

number of answers for 2p queries is 7.93, compared with 1.09 for 2i queries. In addition,

the answers to 2i queries exhibit greater diversity than 3i queries, as the CSKG is sparse and

provides a limited number of distinct tails for sampling 3i queries compared to 2i queries.

7.5 Analysis & Discussion

7.5.1 Ablation Study

We analyze the impact of various data filters, query types, and verbalization methods on

generative inference within COM2. Detailed results can be found in Table 7.4.

Filtering We include two types of filters, a Vera-based plausibility filter and a diversity

filter. Evaluating the performance of generative commonsense inferences on COM2, we

examine the impact of removing both filters while employing GPT2-Large as the backbone

model. Removing the plausibility filter results in a significant performance decline, high-

lighting its critical role. On the other hand, the diversity filter exhibits a minor positive

influence on enhancing performance.

Type of Queries We investigate the impact of training our models on different types of

logical queries. The model trained only on 1p and 2p queries does not generalize well to

other query types, such as pi and ip, leading to a worse performance than the model trained

on all query types. However, according to Table 7.1 and Table 7.3, models trained on

only 2i queries generalize better to downstream commonsense reasoning tasks, potentially

indicating that multi-event reasoning in most existing commonsense benchmarks focuses

on intersection more than projection.

Verbalization We investigate the effect of using a rule-based verbalizer or ChatGPT-

enabled verbalizer to generate COM2 contexts. Using ChatGPT-verbalized queries leads

to better downstream performance on both PCD and COM2. In COM2, the presence of

ChatGPT-verbalization intuitively improves performance since the training context aligns
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Model COM2
R-L CIDEr BERT

Filter
COM2-COMET 14.7 33.0 46.3
- w/o plau. filter 13.0 31.2 42.3
- w/o div. filter 14.4 32.5 45.8
- w/o both filter 12.5 30.3 40.1

Query Types
COMET (1p) 10.0 20.7 44.3
+ 2i 13.6 26.1 39.8
+ 2p 9.8 19.9 43.4
+ 2i, 3i, 2p 14.7 33.0 46.3

Verbalization
COM2-COMET 13.6 26.1 39.8
COM2-COMET (V) 14.3 27.1 43.4
COM2-Llama 35.7 107.2 61.3
COM2-Llama (V) 36.2 105.4 61.4

Model PCD
R-L CIDEr BERT

Verbalization
COM2-COMET 13.8 22.1 53.7
COM2-COMET (V) 14.0 23.2 54.0
COM2-Llama 14.6 22.1 55.3
COM2-Llama (V) 14.8 23.6 55.5

Table 7.4: Ablation studies on filters, type of queries, and using ChatGPT for verbalizing
queries (denoted as V).

with the evaluation set’s format. On the other hand, the context in the PCD dataset is long

and comprised of five sentences. Verbalization not only adds more context to the training

but also aligns better with the PCD format.

7.5.2 Error Analysis

We present a human-annotated quality evaluation of the Llama-7b-based model on the gen-

eration sub-task of COM2. To ensure diverse coverage of query types, we randomly sam-

pled 60 queries, with ten from each of the six types. Manual inspection revealed a common

error where the generated output was partially correct, either providing the answer to one

of the triples in an intersection query or only the one-hop answer instead of the two-hop an-

swer in 2-projection (2p) queries. Table 7.5 includes the number of such ‘1-hop’ partially
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Model #Plau. #1-hop #False

LLama2-7b 26 2 28
COMET-LLama2-7b 29 8 23
COM2-LLama2-7b (2i) 47 2 11
COM2-LLama2-7b (all) 45 3 12

Table 7.5: Human evaluation results on the generative sub-task in COM2 using Llama2-7b
as the backbone. ‘1-hop’ indicates the answer is plausible in terms of only one-hop rela-
tions.

correct answers. Our results demonstrate that the zero-shot Llama model already produces

26 out of 60 plausible inferences. Fine-tuning the model on one-hop ATOMIC further in-

creases the number of plausible generations while more frequently generating inferences

that are one-hop correct. Moreover, fine-tuning on the synthetic training set of COM2 sig-

nificantly improves the model’s ability to generate complex commonsense inferences and

reduces the occurrence of partially correct answers.

We present some error cases in Table 7.6. In general, a common error in both projection

and intersection queries is that the generated answer can be only the one-hop answer instead

of the correct answer that is multi-hop. For example, in the 2p case, “get a new job” is a

direct intention of someone who updates his or her resume. However, the 2p query asks

about the intention of the intention, which requires inducing the intention behind “get a new

job”. In this sense, “to be financially independent” is a more plausible inference. In the case

of 2i queries, the error lies in the absence of inferential gaps between the context, where

the generated answers become paraphrases of the events rather than being the result by any

anchor entity. In the case of ip, a common error for one-hop COMET is the generation of

“None” for complex cases, indicating a deficiency in multi-hop reasoning capabilities.

7.6 Conclusion

In this section, we leverage the concept of conjunctive logical queries to create a com-

plex commonsense reasoning dataset derived from CSKGs. The dataset, COM2, comprises

a human-annotated evaluation set and a distantly supervised training set without further

annotations. Our experiments highlight the challenging nature of complex commonsense

reasoning that involves multiple events or multi-hop scenarios, even for advanced language
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models such as GPT-4. Additionally, we train question-answering models and generative

commonsense reasoning models using COM2. The results show significant improvements

across eight diverse downstream commonsense reasoning tasks, highlighting the potential

of leveraging CSKGs to acquire complex reasoning signals inexpensively without relying

on extra human effort.
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CHAPTER 8

CONCLUSION AND FUTURE WORKS

8.1 Conclusion

First, we study the feasibility of transferring “cheap” and large-scale discourse knowl-

edge to “expensive” inferential if-then commonsense knowledge. Experimental results have

shown that the proposed DISCOS framework can retrieve much more novel and diverse if-

then commonsense knowledge from ASER with high quality comparable with neural text

generation models.

Second, we formally benchmark CKBP and provide a human-annotated evaluation set

containing 37K examples unifying four popular commonsense knowledge bases. We also

propose KG-BERTSAGE to both incorporate the semantic of knowledge triples and the

subgraph structure to conduct reasoning, which achieves the best performance among other

counterparts. Experimental results also show that the task of reasoning unseen triples out-

side of the domain of CSKB is a hard task where current models are far away from human

performance, which brings challenges to the community for future research.

Third, based on the inherent property of the task CKBP, we propose a pseudo-label

based semi-supervised learning method to perform population. Using a teacher model and

a special filtering mechanism on pseudo labels, we achieve the state-of-the-art of CSKB

Population in terms of both in-domain and out-of-domain performance.

Finally, in terms of complex commonsense reasoning, we leverage the concept of con-

junctive logical queries to create a complex commonsense reasoning dataset derived from

CSKGs. Our experiments demonstrate the difficulty of complex commonsense reasoning,

even for advanced language models like GPT-4, when multiple events or multi-hop scenar-

ios are involved. We also trained question answering and generative commonsense reason-

ing models using COM2 and found significant improvements in eight diverse downstream
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tasks. This highlights the potential of using CSKGs to acquire complex reasoning signals

inexpensively, without relying on extra human effort.

8.2 Discussions on the Strengths and Limitations

Our proposed commonsense acquisition pipeline has mainly two advantages. First, it is

scalable and cheap. The CSKB Population pipeline does not include expensive human an-

notations or LLM prompting. It builds on existing information-extracted discourse knowl-

edge bases, and uses a classifier fine-tuned on the existing human-annotated CSKBs. It

can easily be scaled up. Second, it can provide more diverse and novel knowledge. Our

pipeline uses large-scale information-extracted knowledge as candidate knowledge, which

is novel and diverse as evaluated in Section 3. The benefits are reflected by the downstream

commonsense question answering improvements in Table 6.2.

However, there are also several limitations of CSKB Population. First, with the develop-

ment of backbone large language models, LLMs can not generate very plausible common-

sense knowledge with concrete instructions and several exemplars, and CSKB population

cannot outperform LLMs in terms of accuracy. As experiments showed in NovaCOMET

and ATOMIC-10x, the annotation quality is even better than humans. Nevertheless, it is

not a limitation of our framework but a limitation of the techniques we used. If we apply

the latest LLM-powered information extraction tools and the latest LLMs as the backbone

classifier, the performance of our framework is also expected to improve a lot. This is left

as a future work. Second, the creation of the candidate information-extraction discourse

knowledge graph is costly and requires parsing on hundred-billion-scale corpora.

8.3 Future Works

Regarding the acquisition of commonsense knowledge, future works regarding improving

commonsense knowledge base population can focus on the denoising of unlabeled dis-

course knowledge. Even though in PseudoReasoner, we already include some plausibility

filter and influence-function based filters, more fine-grained algorithms that focuses on de-
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noising have the potential of further improving the population performance.

In addition, currently, the candidate knowledge come from information extraction, which

contain a lot of noise by nature. With the development of backbone language models and

their ability of serving as knowledge bases, the process of providing candidate common-

sense knowledge can be replaced with prompting large language models.

Regarding reasoning, since our current efforts on COM2 in Chapter 7 only study the

benchmarking and plain fine-tuning and in-context learning experiments, future direction

can be put to more fine-grained knowledge-augmented methods. For example, the reason-

ing in COM2 is related to first linking the events or situations in the context to the knowl-

edge base, and the answers may be entailed by the surrounding neighbors in the knowledge

base. Future works can be also put to generative retrieval, considering the remarkable effect

of language models as knowledge bases and the contextual reasoning ability.
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APPENDIX A

ADDITIONAL DETAILS ON COMMONSENSE

KNOWLEDGE BASES

A.1 Relations

During human annotation, we translate the symbolic knowledge triples into human lan-

guage for annotators to better understand the questions. A (h, r, t) triple where h, r, and t

are the head, relation, and tail, is translated to if h, then [Description], t. Here, the descrip-

tion placeholder [Description] comes from rules in Table A.1, which is modified from [10].

These descriptions can also be regarded as definitions of those commonsense relations.

Moreover, the definitions of the discourse relations in ASER are presented in Table A.2.

We also present the statistics of relation distribution for ASERnorm in Table A.3.

A.2 Additional Details of Pre-processing

A.2.1 Examples of Format Unification

Table A.4 demonstrates several examples for unifying the formats of different resources. In

ConceptNet and Knowlywood, the nodes are mostly verb or verb-object phrases, and we

add a subject “PersonX” in front of each node. For ATOMIC, the main modification part is

the tails, where subjects tend to be missing. We treat agent-driven (relations investigating

causes and effects on PersonX) and theme-driven (relations investigating causes and effects

on PersonY) differently, and add PersonX or PersonY in front of the tails whose subjects are

missing. For ASER, rules are used to discriminate PersonX and PersonY in a certain edge.

Two examples for ASER and ATOMIC demonstrating the differences between PersonX

and PersonY are provided in the table. For GLUCOSE, we simply replace SomeoneA with
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Relation Decriptions

oEffect then, PersonY will
xEffect then, PersonX will
gEffect then, other people or things will
oWant then, PersonY wants to
xWant then, PersonX wants to
gWant then, other people or things want to
oReact then, PersonY feels
xReact then, PersonX feels
gReact then, other people or things feel
xAttr PersonX is seen as
xNeed but before, PersonX needed
xIntent because PersonX wanted
isBefore happens before
isAfter happens after
HinderedBy can be hindered by
xReason because
Causes causes
HasSubEvent includes the event/action

Table A.1: Descriptions of different commonsense relations, which are translation rules
from knowledge triples (h, r, t) to human language, “if h, then [Description], t” [10].

PersonX and SomeoneB with PersonY accordingly. Moreover, all the words are lemmatized

using Stanford CoreNLP parser1 to normalized forms.

A.2.2 Examples of Populated Triples

Examples of the annotations of the populated triples are listed in Table A.7. In the Original

Test Set category, the triples are composed of two parts, one is the ground truth triples from

the original CSKBs, and one is triples randomly sampled from Gc.

1https://stanfordnlp.github.io/CoreNLP/
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Relation Decriptions

Precedence h happens before t
Succession h happens after h
Synchronous h happens the same time as t
Reason h happens because t
Result h result in t
Condition Only when t happens, h can happen
Contrast h and t share significant difference regarding some property
Concession h and t result in another opposite event
Alternative h and t are alternative situations of each other.
Conjunction h and t both happen
Restatement h restates t
Instantiation t is a more detailed description of h
ChosenAlternative h and t are alternative situations of each other, but the subject prefers h
Exception t is an exception of h
Co_Occurrence h and t co-occur at the same sentence

Table A.2: Descriptions of discourse relations in ASER [11].

Relation number of edges

Precedence 4,957,481
Succession 1,783,154
Synchronous 8,317,572
Reason 5,888,968
Result 5,562,565
Condition 8,109,020
Contrast 23,208,195
Concession 1,189,167
Alternative 1,508,729
Conjunction 37,802,734
Restatement 159,667
Instantiation 33,840
ChosenAlternative 91,286
Exception 51,502
Co_Occurrence 124,330,714

Total 222,994,594

Table A.3: Statistics of relations in ASERnorm.

Resource
Original Format Aligned Format

Head Relation Tail Head Tail

ConceptNet get exercise HasSubEvent ride bicycle PersonX get exercise PersonX ride bicycle

ATOMIC(2020)
PersonX gets exercise xReact tired PersonX get exercise PersonX be tired

PersonX visits PersonY at work oEffect say hello PersonX visits PersonY PersonY say hello

GLUCOSE SomeoneA gets exercise Dim 1 (xEffect) SomeoneA gets tired PersonX get exercise PersonX be tired

Knowlywood get exercise NextActivity take shower PersonX get exercise PersonX take shower

ASER
he gets exercise Result he is tired PersonX get exercise PersonX be tired

he visits her at work Precedence she is happy PersonX visit PersonY at work PersonY is happy

Table A.4: Examples of format unification of CSKBs and eventuality graphs.
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Commonsense

Relations
ASER Relations Patterns

Effect, Want

isBefore, Causes
Result, Precedence, Condition−1, Succession−1, Reason−1 -

React Result, Precedence, Condition−1, Succession−1, Reason−1 s-v/be-a/o, s-v-be-
a/o, s-v, spass-v

xIntent, xNeed,
isAfter

Condition, Succession, Reason, Result−1, Precedence−1 -

xAttr
Synchronous±1, Reason±1, Result±1, Condition±1,

Conjunction±1, Restatement±1
s-be-a/o, s-v-a, s-v-
be-a/o, s-v, spass-v

HinderedBy Concession, Alternative -

HasSubEvent Synchronous±1, Conjunction±1 -

Table A.5: Rules of selecting candidate triples. For a certain commonsense relation rcs in
the first column, (head, rASER, tail) in ASER, where rASER belongs to the corresponding
cell in the second column, can be selected as a candidate (head, rcs, tail) for annotation.

Model Average AUC

KG-BERTSAGE (Dir) 66.2
KG-BERTSAGE (Undir) 67.2

Table A.6: Experimental results using two different neighboring functions.

Head Relation Tail Label Source

PersonX give PersonY ride xNeed PersonX need to wear proper clothes Plau.
Triples in CSKBs

(Original Test Set)
PersonX be wait for taxi isAfter PersonX hail a taxi Plau.

PersonX be diagnose with something Causes PersonX be sad Plau.

PersonX feel something xEffect PersonX figure Implau. Randomly
sampled
examples

PersonX be patient with ignorance HinderedBy PersonY have the right vocabulary Implau.

PersonY grasp PersonY meaning HasSubEvent PersonY open it mechanically Implau.

PersonX spill coffee oEffect PersonY have to server Plau.

CSKB head +
ASER tail

PersonX care for PersonY xNeed PersonX want to stay together Plau.

PersonX be save money HasSubEvent PeopleX can not afford something Plau.

PersonX decide to order a pizza xReact PersonX have just move Implau.

it be almost christmas gReact PersonX be panic Implau.

arm be break isBefore PersonY ask Implau.

PersonX go early in morning xEffect PersonX do not have to deal with crowd Plau.

ASER edges

PersonX have take time to think it over
PersonX

xReact PersonX be glad Plau.

PersonX have a good work-life balance xIntent PersonX be happy Plau.

PersonX weight it by value oWant PersonY bet Implau.

PersonX be hang out on reddit oReact PersonY can not imagine Implau.

PersonX can get PersonY out shell xIntent PersonX just start poach PersonY Implau.

Table A.7: Examples of the human-annotated populated triples.
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